
A Program Logic for
Concurrent Objects under Fair Scheduling

Hongjin Liang Xinyu Feng
School of Computer Science and Technology & Suzhou Institute for Advanced Study

University of Science and Technology of China
lhj1018@ustc.edu.cn xyfeng@ustc.edu.cn

Abstract
Existing work on verifying concurrent objects is mostly concerned
with safety only, e.g., partial correctness or linearizability. Although
there has been recent work verifying lock-freedom of non-blocking
objects, much less efforts are focused on deadlock-freedom and
starvation-freedom, progress properties of blocking objects. These
properties are more challenging to verify than lock-freedom because
they allow the progress of one thread to depend on the progress of
another, assuming fair scheduling.

We propose LiLi, a new rely-guarantee style program logic for
verifying linearizability and progress together for concurrent objects
under fair scheduling. The rely-guarantee style logic unifies thread-
modular reasoning about both starvation-freedom and deadlock-
freedom in one framework. It also establishes progress-aware
abstraction for concurrent objects, which can be applied when
verifying safety and liveness of client code. We have successfully
applied the logic to verify starvation-freedom or deadlock-freedom
of representative algorithms such as ticket locks, queue locks, lock-
coupling lists, optimistic lists and lazy lists.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification – Correctness proofs, Formal
methods; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs

General Terms Theory, Verification

Keywords Concurrency, Progress, Program Logic, Rely-Guarantee
Reasoning, Refinement

1. Introduction
A concurrent object or library provides a set of methods that al-
low multiple client threads to manipulate the shared data structure.
Blocking synchronization (i.e., mutual exclusion locks), as a straight-
forward technique to ensure exclusive accesses and to control the
interference, has been widely-used in object implementations to
achieve linearizability, which ensures the object methods behave as
atomic operations in a concurrent setting.

In addition to linearizability, a safety property, object imple-
mentations are expected to also satisfy progress properties. The
non-blocking progress properties, such as wait-freedom and lock-
freedom which have been studied a lot (e.g., [5, 10, 16, 24]), guar-
antee the termination of the method calls independently of how the
threads are scheduled. Unfortunately these properties are too strong
to be satisfied by algorithms with blocking synchronization. For
clients using lock-based objects, a delay of a thread holding a lock
will block other threads requesting the lock. Thus their progress
relies on the assumption that every thread holding the lock will
eventually be scheduled to release it. This assumption requires fair
scheduling, i.e., every thread gets eventually executed. As summa-
rized by Herlihy and Shavit [14], there are two desirable progress
properties for blocking algorithms, both assuming fair scheduling:

• Deadlock-freedom: In each fair execution, there always exists
some method call that can finish. It disallows the situation in
which multiple threads requesting locks are waiting for each
other to release the locks in hand. It ensures the absence of
livelock, but not starvation.

• Starvation-freedom: Every method call should finish in fair
executions. It requires that every thread attempting to acquire
a lock should eventually succeed and in the end release the
lock. Starvation-freedom is stronger than deadlock-freedom.
Nevertheless it can often be achieved by using fair locks [13].

Recent program logics for verifying concurrent objects either
prove only linearizability and ignore the issue of termination (e.g., [6,
21, 30, 31]), or aim for non-blocking progress properties (e.g., [5,
10, 16, 24]), which cannot be applied to blocking algorithms that
progress only under fair scheduling. The fairness assumption intro-
duces complicated interdependencies among progress properties of
threads, making it incredibly more challenging to verify the lock-
based algorithms than their non-blocking counterparts. We will
explain the challenges in detail in Sec. 2.

It is important to note that, although there has been much work
on deadlock detection or deadlock-freedom verification (e.g., [4, 20,
32]), deadlock-freedom is often defined as a safety property, which
ensures the lack of circular waiting for locks. It does not prevent live-
lock or non-termination inside the critical section. Another limitation
of this kind of work is that it often assumes built-in lock primitives,
and lacks support of ad-hoc synchronization (e.g., mutual exclusion
achieved using spin-locks implemented by the programmers). The
deadlock-freedom we discuss in this paper is a liveness property and
its definition does not rely on built-in lock primitives. We discuss
more related work on liveness verification in Sec. 8.

In this paper we propose LiLi, a new rely-guarantee style logic
for concurrent objects under fair scheduling. LiLi is the first program
logic that unifies verification of linearizability, starvation-freedom
and deadlock-freedom in one framework (the name LiLi stands for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

POPL’16, January 20–22, 2016, St. Petersburg, FL, USA
c© 2016 ACM. 978-1-4503-3549-2/16/01...$15.00

http://dx.doi.org/10.1145/2837614.2837635

385

Linearizability and Liveness). It supports verification of both mutex-
based pessimistic algorithms (including fine-grained ones such as
lock-coupling lists) and optimistic ones such as optimistic lists and
lazy lists. The unified approach allows us to prove in the same logic,
for instance, the lock-coupling list algorithm is starvation-free if we
use fair locks, e.g., ticket locks [25], and is deadlock-free if regular
test-and-set (TAS) based spin locks are used. Our work is based on
earlier work on concurrency verification, but we make the following
new contributions:

• We divide environment interference that affects progress of a
thread into two classes, namely blocking and delay. We show
different occurrences of them correspond to the classification of
progress into wait-freedom, lock-freedom, starvation-freedom
and deadlock-freedom (see Sec. 2.2.1 and Sec. 6). Recognizing
the two classes of interference allows us to come up with
different mechanisms in our program logic to reason about them
separately. Our logic also provides parameterized specifications,
which can be instantiated to choose different combinations of
the mechanisms. This gives us a unified program logic that can
verify different progress properties using the same set of rules.

• We propose two novel mechanisms, definite actions and strat-
ified tokens, to reason about blocking and delay, respectively.
They are also our key techniques to avoid circularity in rely-
guarantee style liveness reasoning. A definite action character-
izes a thread’s progress that does not rely on the progress of the
environment. Each blocked thread waits for a queue of definite
actions. Starvation-freedom requires the length of the queue be
strictly decreasing, while deadlock-freedom allows disciplined
queue jumps based on the token-transfer ideas [16, 24]. To avoid
circular delay, we further generalize the token-transfer ideas by
stratifying tokens into multiple levels, which enables us to verify
complex algorithms that involve both nested locks and rollbacks
(e.g., the optimistic list algorithm).

• By verifying linearizability and progress together, we can pro-
vide progress-aware abstractions for concurrent objects (see
Sec. 5). Our logic is based on termination-preserving simula-
tions as the meta-theory, which establish contextual refinements
that assume fair scheduling at both the concrete and the abstract
levels. We prove the contextual refinements are equivalent to
linearizability and starvation-freedom/deadlock-freedom. The
refinements allow us to replace object implementations with
progress-aware abstract specifications when the client code is
verified. As far as we know, our abstraction for deadlock-free
(and linearizable) objects has never been proposed before.

• We have applied our logic to verify simple objects with coarse-
grained synchronization using TAS locks, ticket locks [25] and
various queue locks (including Anderson array-based locks,
CLH locks and MCS locks) [13]. For examples with more
permissive locking schemes, we have successfully verified the
two-lock queues, and various fine-grained and optimistic list
algorithms. To the best of our knowledge, we are the first to
formally verify the starvation-freedom/deadlock-freedom of
lock-coupling lists, optimistic lists and lazy lists.

Notice that with the assumption of fair scheduling, wait-freedom
and lock-freedom are equivalent to starvation-freedom and deadlock-
freedom, respectively. Therefore our logic can also be applied to
verify wait-free and lock-free algorithms. We discuss this in Sec. 6.

In the rest of this paper, we first analyze the challenges and
explain our approach informally in Sec. 2. Then we give the basic
technical setting in Sec. 3, and present our logic in Sec. 4, whose
soundness theorem, together with the abstraction theorem, is given
in Sec. 5. We discuss how our logic supports wait-free and lock-free

(a) abstract operation INC: <x++>;

dfInc :
1 local b := false, r;
2 while (!b) { b := cas(&L, 0, cid); } // lock L
3 r := x; x := r + 1; // critical section
4 L := 0; // unlock L

(b) deadlock-free implementation dfInc using a test-and-set lock

sfInc :
1 local i, o, r;
2 i := getAndInc(next);
3 o := owner; while (i != o) { o := owner; }
4 r := x; x := r + 1; // critical section
5 owner := i + 1;

(c) starvation-free implementation sfInc using a ticket lock

Figure 1. Counters.

objects too in Sec. 6. Finally, we summarize the examples we have
verified in Sec. 7, and discuss related work and conclude in Sec. 8.

2. Informal Development
Below we first give an overview of the traditional rely-guarantee
logic for safety proofs [18], and the way to encode linearizability
verification in the logic. Then we explain the challenges and our
ideas in supporting liveness verification under fair scheduling.

2.1 Background
Rely-guarantee reasoning. In rely-guarantee reasoning [18],
each thread is verified in isolation under some assumptions on
its environment (i.e., the other threads in the system). The judgment
is in the form of R,G ` {P}C{Q}, where the pre- and post-
conditions P and Q specify the initial and final states respectively.
The rely condition R specifies the assumptions on the environ-
ment, which are the permitted state transitions that the environment
threads may have. The guarantee condition G specifies the possible
transitions made by the thread itself. To ensure that parallel threads
can collaborate, the guarantee of each thread needs to satisfy the
rely of every other thread.

Encoding linearizability verification. As a working example,
Fig. 1(b) shows a counter object dfInc implemented with a test-
and-set (TAS) lock L. Verifying linearizability of dfInc requires
us to prove it has the same abstract behaviors as INC in Fig. 1(a),
which increments the counter x atomically.

Following previous work [21, 24, 31], one can extend a rely-
guarantee logic to verify linearizability. We use an assertion
arem(C) to specify as an auxiliary state the abstract operation C to
be fulfilled, and logically execute C at the linearization point (LP)
of the concrete implementation. For dfInc, we prove a judgment in
the form of R,G ` {P ∧ arem(INC)}dfInc{Q ∧ arem(skip)}.
Here R and G specify the object’s actions (i.e., lock acquire and
release, and the counter updates at both the concrete and the abstract
sides) made by the environment and the current thread respectively.
P andQ are relational assertions specifying the consistency relation
between the program states at the concrete and the abstract sides.
The postcondition arem(skip) shows that at the end of dfInc there
is no abstract operation to fulfill.

2.2 Challenges of Progress Verification
Progress properties of objects such as deadlock-freedom and
starvation-freedom have various termination requirements of ob-
ject methods. They must be satisfied with interference from other
threads considered, which makes the verification challenging.

386

2.2.1 Non-Termination Caused by Interference
In a concurrent setting, an object method may fail to terminate
due to interference from its environment. Below we point out there
are two different kinds of interference that may cause thread non-
termination, namely blocking and delay. Let’s first see a classic
deadlocking example.

DL-12 : DL-21 :
lock L1; lock L2; lock L2; lock L1;
unlock L2; unlock L1; unlock L1; unlock L2;

The methods DL-12 and DL-21 may fail to terminate because
of the circular dependency of locks. This non-termination is caused
by permanent blocking. That is, when DL-12 tries to acquire L2, it
could be blocked if the lock has been acquired by DL-21.

For a second example, the call of the dfInc method (in Fig. 1(b))
by the left thread below may never terminate.

dfInc(); while (true) dfInc();

When the left thread tries to acquire the lock, even if the lock is
available at that time, the thread could be preempted by the right
thread, who gets the lock ahead of the left. Then the left thread
would fail at the cas command in the code of dfInc and have to
loop at least one more round before termination. This may happen
infinitely many times, causing non-termination of the dfInc method
on the left. In this case we say the progress of the left method is
delayed by its environment’s successful acquirement of the lock.

The key difference between blocking and delay is that blocking
is caused by the absence of certain environment actions, e.g.,
releasing a lock, while delay is caused by the occurrence of certain
environment actions, e.g., acquiring the lock needed by the current
thread (even if the lock is subsequently released). In other words, a
blocked thread can progress only if its environment progresses first,
while a delayed thread can progress if we suspend the execution of
its environment.

Lock-free algorithms disallow blocking (thus they do not rely on
fair scheduling), although delay is common, especially in optimistic
algorithms. Starvation-free algorithms allow (limited) blocking, but
not delay. As the dfInc example shows, delay from non-terminating
clients may cause starvation. Deadlock-free algorithms allow both
(with restrictions). As the optimistic list in Fig. 2(a) (explained in
Sec. 2.3.4) shows, blocking and delay can be intertwined by the
combined use of blocking-based synchronization and optimistic con-
currency, which makes the reasoning significantly more challenging
than reasoning about lock-free algorithms.

How do we come up with general principles to allow blocking
and/or delay, but on the other hand to guarantee starvation-freedom
or deadlock-freedom?

2.2.2 Avoid Circular Reasoning
Rely-guarantee style logics provide the power of thread-modular
verification by circular reasoning. When proving the behaviors
of a thread t guarantee G, we assume that the behaviors of the
environment thread t′ satisfy R. Conversely, the proof of thread t′

relies on the assumptions on the behaviors of thread t.
However, circular reasoning is usually unsound in liveness

verification [1]. For instance, we could prove termination of each
thread in the deadlocking example above, under the assumption that
each environment thread eventually releases the lock it owns. How
do we avoid the circular reasoning without sacrificing rely-guarantee
style thread-modular reasoning?

The deadlocking example shows that we should avoid circular
reasoning to rule out circular dependency caused by blocking. Delay
may also cause circular dependency too. Figure 2(b) shows a thread
t using two locks. It first acquires L1 (line 1) and then tests whether
L2 is available (line 2). If the test fails, the thread rolls back. It
releases L1 (line 4), and then repeats the process of acquiring L1

(line 5) and testing L2 (line 6). Suppose another thread t′ does the
opposite: repeatedly acquiring L2 and testing L1. In this example the
acquirement of L2 by t′ may cause t to fail its test of the availability
of L2. The test could have succeeded if t′ did not interfere, so t′

delays t. Conversely, the acquirement of L1 by t may delay t′. Then
the two threads can cause each other to continually roll back, and
neither method progresses.

Usually when delay is allowed, we need to make sure that the
action delaying other threads is a “good” one in that it makes the
executing thread progress (e.g., a step towards termination). This
is the case with the “benign delays” in the dfInc example and the
optimistic list example. But how do we tell if an action is good or
not? The acquirements of locks in Fig. 2(b) do seem to be good
because they make the threads progress towards termination. How
do we prevent such lock acquirements from delaying others, which
may cause circular delay?

2.2.3 Ad-Hoc Synchronization and Dynamic Locks
One may argue that the circularity can be avoided by simply
enforcing certain orders of lock acquirements, which has been
a standard way to avoid “deadlock cycles” (note this is a safety
property, as we explained in Sec. 1). Although lock orders can help
liveness reasoning, it has many limitations in practice.

First, the approach cannot apply for ad-hoc synchronization. For
instance, there are no locks in the following deadlocking program.

x := 1;
while (y = 1) skip;
x := 0;

y := 1;
while (x = 1) skip;
y := 0;

Moreover, sometimes we need to look into the lock implementa-
tion to prove starvation-freedom. For instance, the dfInc in Fig. 1(b)
using a TAS lock is deadlock-free but not starvation-free. If we re-
place the TAS lock with a ticket lock, as in sfInc in Fig. 1(c), the
counter becomes starvation-free. Again, there are actually no locks
in the programs if we have to work at a low abstraction level to look
into lock implementations.

Second, it can be difficult to enforce the ordering for fine-grained
algorithms on dynamic data structures (e.g., lock-coupling list).
Since the data structure is changing dynamically, the set of locks
associated with the nodes is dynamic too. To allow a thread to
determine dynamically the order of locks, we have to ensure its view
of ordering is consistent with all the other threads in the system,
a challenge for thread-modular verification. Although dynamic
locks are supported in some previous work treating deadlock-
freedom as a safety property (e.g., [4, 19]), it is unclear how to
apply the techniques for general progress reasoning, with possible
combination of locks, ad-hoc synchronization and rollbacks.

2.3 Our Approaches
To address these problems, our logic enforces the following princi-
ples to permit restricted forms of blocking and delay, but prevent
circular reasoning and non-termination.

First, if a thread is blocked, the events it waits for must eventually
occur. To avoid circular reasoning, we find “definite actions” of
each thread, which under fair scheduling will definitely happen
once enabled, regardless of the interference from the environment.
Then each blocked thread needs to show it waits for only a finite
number of definite actions from the environment threads. They form
an acyclic queue, and there is always at least one of them enabled.
This is what we call “definite progress”, which is crucial for proving
starvation-freedom.

Second, actions of a thread can delay others only if they are
making the executing object method to move towards termination.
Each object method can only execute a finite number of such
delaying actions to avoid indefinite delay. This is enforced by

387

assigning a finite number of tokens to each method. A token must
be paid to execute a delaying action.

Third, we divide actions of a thread into normal ones (which do
not delay others) and delaying ones, and further stratify delaying
actions into multiple levels. When a thread is delayed by a level-k
action from its environment, it is allowed to execute not only more
normal actions, but also more delaying actions at lower levels.
Allowing one delaying action to trigger more steps of other delaying
actions is necessary for verifying algorithms with nested locks and
rollbacks, such as the optimistic lists in Fig. 2(a). The stratification
prevents the circular delay in the example of Fig. 2(b).

Fourth, our delaying actions and definite actions are all seman-
tically specified as part of object specifications, therefore we can
support ad-hoc synchronizaiton and do not rely on built-in synchro-
nization primitives to enforce ordering of events. Moreover, since
the specifications are all parametrized over states, they are expres-
sive enough to support dynamic locks as in lock-coupling lists. Also
our “definite progress” condition allows each blocked thread to de-
cide locally and dynamically a queue of definite actions it waits for.
There is no need to enforce a global ordering of blocking depen-
dencies agreed by every thread. This also provides thread-modular
support of dynamic locks.

Below we give more details about some of these key ideas.

2.3.1 Using Tokens to Prevent Infinite Loops
The key to ensuring termination is to require each loop to terminate.
Earlier work [16, 24] requires each round of the loop to consume
resources called tokens. The rule for loops is in the following form:

P ∧B ⇒ P ′ ∗ ♦ R,G ` {P ′}C{P}
R,G ` {P}while (B) C{P ∧ ¬B}

(TERM)

Here ♦ represents one token, and “∗” is the normal separating
conjunction in separation logic. The premise says the precondition
P ′ of the loop body C has one less token than P , showing that one
token needs to be consumed to start this new round of loop. Since
the number of tokens strictly decreases, we know the loop must
terminate when the thread has no token.

We use this simple idea to enforce termination of loops, and
extend it to handle blocking and delay in a concurrent setting.

2.3.2 Definite Actions and Definite Progress
Our approach to cut the blocking-caused circular dependency is
inspired by the implementation of ticket locks, which is used to
implement the starvation-free counter sfInc in Fig. 1(c). It uses
the shared variables owner and next to guarantee the first-come-
first-served property of the lock. Initially owner equals next. To
acquire the lock, a thread atomically increments next and reads
its old value to a variable i (line 2). The value of i becomes the
thread’s ticket. The thread waits until owner equals its ticket value i
(line 3). Finally the lock is released by incrementing owner (line 5)
such that the next waiting thread (the thread with ticket i + 1, if
there is one) can now enter the critical section.

We can see sfInc is not concerned with the circular dependency
problem. Intuitively the ticket lock algorithm ensures that the threads
requesting the lock always constitute a queue t1, t2, . . . , tn. The
head thread, t1, gets the ticket number which equals owner and
can immediately acquire the lock. Once it releases the lock (by
increasing owner), t1 is dequeued. Moreover, for any thread t in
this queue, the number of threads ahead of t never increases. Thus t
must eventually become the head of the queue and acquire the lock.
Here the dependencies among progress of the threads are in concert
with the queue.

Following this queue principle, we explicitly specify the queue
of progress dependencies in our logic to avoid circular reasoning.

Definite actions. First, we introduce a novel notion called a
“definite action”D, which models a thread action that, once enabled,
must be eventually finished regardless of what the environment
does. In detail, D is in the form of Pd ; Qd. It requires in every
execution thatQd should eventually hold if Pd holds, and Pd should
be preserved (by both the current thread and the environment) until
Qd holds. For sfInc, the definite action Pd ; Qd of a thread can
be defined as follows. Pd says that owner equals the thread’s ticket
number i, andQd says that owner has been increased to i+1. That
is, a thread definitely releases the lock when acquiring it. Of course
we have to ensure in our logic that D is indeed definite. We will
explain in detail the logic rule that enforces it in Sec. 4.2.2.

Definite progress. Then we use definite actions to prove termina-
tion of loops. We need to first find an assertion Q specifying the
condition when the thread t can progress on its own, i.e., it is not
blocked. Then we enforce the following principles:

1. If Q is continuously true, we need to prove the loop terminates
following the idea of the TERM rule;

2. If Q is false, the following must always be true:

(a) There is a finite queue of definite actions of other threads
that the thread t is waiting for, among which there is at least
one (from a certain thread t′) enabled. The length of the
queue is E.

(b) E decreases whenever one of these definite actions is fin-
ished;

(c) The expression E is never increased by any threads (no
matter whether Q holds or not); and it is non-negative.

We can see E serves as a well-founded metric. By induction over E
we know eventually Q holds, which implies the termination of the
loop by the above condition 1.

These conditions are enforced in our new inference rule for
loops, which extends the TERM rule (in Sec. 2.3.1) and is presented
in Sec. 4.2.2. The condition 2 shows the use of definite actions
in our reasoning about progress. We call it the “definite progress”
condition.

The reasoning above implicitly makes use of the fairness as-
sumption. The fair scheduling ensures that the environment thread t′

mentioned in the condition 2(a) is scheduled infinitely often, there-
fore its definite action will definitely happen. By conditions 2(b)
and 2(c) we know E will become smaller. In this way E keeps
decreasing until Q holds eventually.

For sfInc, Q is defined as (i = owner) and the metric E is
(i− owner). Whenever an environment thread t′ finishes a definite
action by releasing the lock, it increases owner, so E decreases.
When E is decreased to 0, the current thread is unblocked. Its loop
terminates and it succeeds in acquiring the lock.

2.3.3 Allowing Queue Jumps for Deadlock-Free Objects
The method dfInc in Fig. 1(b) implements a deadlock-free counter
using the TAS lock. If the current thread t waits for the lock, we
know the queue of definite actions it waits for is of length one
because it is possible for the thread to acquire the lock immediately
after the lock is released. However, as we explain in Sec. 2.2.1,
another thread t′ may preempt t and do a successful cas. Then
thread t is blocked and waits for a queue of definite actions again.
This delay caused by thread t′ can be viewed as a queue jump in our
definite-progress-based reasoning. Actually dfInc cannot satisfy
the definite progress requirement because we cannot find a strictly
decreasing queue size E. It is not starvation-free.

However, the queue jump here is acceptable when verifying
deadlock-freedom. This is because thread t′ delays t only if t′

388

1 local b := false, p, c;
2 while (!b) {
3 (p, c) := find(e);
4 lock p; lock c;
5 b := validate(p, c);
6 if (!b) {
7 unlock c; unlock p; }
8 }
9 update(p, c, e);

10 unlock c; unlock p;

(a) optimistic list

1 lock L1;
2 local r := L2;
3 while (r != 0) {
4 unlock L1;
5 lock L1;
6 r := L2;
7 }
8 lock L2;
9 unlock L2;

10 unlock L1;

(b) rollback

Figure 2. Examples with multiple locks.

successfully acquires the lock, which allows it to eventually finish
the dfInc method. Thus the system as a whole progresses.

Nevertheless, as explained in Sec. 2.2.2, we have to make sure
the queue jump (which is a special form of delay) is a “good” one.

We follow the token-transfer ideas [16, 24] to support disci-
plined queue jumps. We explicitly specify in the rely/guarantee
conditions which steps could delay the progress of other threads
(jump their queues). To prohibit unlimited queue jumps without
making progress, we assign a finite number m of �-tokens to an
object method, and require that a thread can do at most m delaying
actions before the method finishes.

Whenever a step of thread t′ delays the progress of thread t,
we require t′ to consume one �-token. At the same time, thread t
could increase ♦-tokens so that it can loop more rounds. Besides,
we redefine the definite progress condition to allow the metric E
(about the length of the queue) to be increased when an environment
thread jumps the queue at the cost of a �-token.

2.3.4 Allowing Rollbacks for Optimistic Locking
The ideas we just explained already support simple deadlock-free
objects such as dfInc in Fig. 1(b), but they cannot be applied to
objects with optimistic synchronization, such as optimistic lists [13]
and lazy lists [11].

Figure 2(a) shows part of the optimistic list implementation.
Each node of the list is associated with a TAS lock, the same lock
as in Fig. 1(b). A thread first traverses the list without acquiring any
locks (line 3). The traversal find returns two adjacent node pointers
p and c. The thread then locks the two nodes (line 4), and calls
validate to check if the two nodes are still valid list nodes (line 5).
If validation succeeds, then the thread performs its updates (adding
or removing elements) to the list (line 9). Otherwise it releases the
two node locks (line 7) and restarts the traversal.

For this object, when the validation fails, a thread will release
the locks it has acquired and roll back. Thus the thread may acquire
the locks for an unbounded number of times. Since each lock
acquirement will delay other threads requesting the same lock and
each delaying action should consume one �-token, it seems that
the thread would need an infinite number of �-tokens, which we
prohibit in the preceding subsection to ensure deadlock-freedom,
even though this list object is indeed deadlock-free.

We generalize the token-transfer ideas to allow rollbacks in order
to verify this kind of optimistic algorithms, but still have to be
careful to avoid the circular delay caused by the “bad” rollbacks in
Fig. 2(b), as we explain in Sec. 2.2.2.

Our solution is to stratify the delaying actions. Each action is
now labeled with a level k. The normal actions which cannot delay
other threads are at the lowest level 0. The �-tokens are stratified
accordingly. A thread can roll back and do more actions at level k
only when its environment does an action at a higher level k′, at the
cost of a k′-level �-token. Note that the �-tokens at the highest level
are strictly decreasing, which means a thread cannot roll back its
actions of the highest level. In fact, the numbers of �-tokens at all

(MName) f ∈ String (ThrdID) t ∈ Nat

(Expr) E ::= x | n | E + E | . . .
(BExp) B ::= true | false | E = E | !B | . . .
(Instr) c ::= x := E | x := [E] | [E] := E | print(E) | . . .
(Stmt) C ::= skip | c | x := f(E) | return E | 〈C〉

| C;C | if (B) C else C | while (B){C}
(Prog) W ::= skip | let Π in C ‖ . . .‖C

(ODecl) Π,Γ ::= {f1 ; (x1, C1), . . . , fn ; (xn, Cn)}

(Store) s, s ∈ Var ⇀ Int (Heap) h,h ∈ Nat ⇀ Int

(Mem) σ,Σ ::= (s, h) (PState) S ::= (σc, σo, . . .)

Figure 3. The language syntax and state model.

levels constitute a tuple (mk, . . . ,m2,m1). It is strictly descending
along the dictionary order.

The stratified �-tokens naturally prohibit the circular delay
problem discussed in Sec. 2.2.2 with the object in Fig. 2(b) . The
deadlock-free optimistic list in Fig. 2(a) can now be verified. We
classify its delaying actions into two levels. Actions at level 2 (the
highest level) update the list, which correspond to line 9 in Fig. 2(a),
and each method can do only one such action. Lock acquirements
are classified at level 1, so a thread is allowed to roll back and
re-acquire the locks when its environment updates the list.

3. Programming Language
Figure 3 gives the syntax of the language. A program W consists of
multiple parallel threads sharing an object Π. We say the threads are
the clients of the object. An object declaration Π is a mapping from
a method name f to a pair of argument and code (method body).
The statements C are similar to those in the simple language used
for separation logic. The command print(E) generates externally
observable events, which allows us to observe behaviors of programs.
We assume it is used only in the code of clients. We use 〈C〉 to
represent an atomic block in which C is executed atomically.

To simplify the presentation, we make several simplifications
here. We assume there is only one concurrent object in the system.
Each method of the object takes only one argument, and the method
body ends with a return E command. Also we assume there is no
nested method invocation. For the abstract object specification Γ,
each method body is an atomic operation 〈C〉 (ahead of the return
command), and executing the code is always safe and never blocks.

The model of program states S is defined at the bottom of Fig. 3.
To ensure that the client code does not touch the object state, in S
we separate the states accessed by clients (σc) and by the object
(σo). Here S may also contain auxiliary data about the control stacks
for method calls. Execution of programs is modeled as a labeled
transition system (W,S)

e7−→ (W ′,S ′). Here e is an event (either
observable or not) produced by the transition. We give the small-step
transition semantics in TR [22].

Below we often write Σ, s and h for the notations at the abstract
level to distinguish from the concrete-level ones (σ, s and h).

4. Program Logic LiLi
LiLi verifies the linearizability of objects by proving the method
implementations refine abstract atomic operations. The top level
judgment is in the form of D, R,G ` {P}Π�Γ. (The OBJ rule for
this judgment is given in Fig. 7 and will be explained later.) To verify
an object Π, we give a corresponding object specification Γ (see
Fig. 3), which maps method names to atomic commands. In addition,
we need to provide an object invariant (P) and rely/guarantee
conditions (R and G) for the refinement reasoning in a concurrent

389

(RelAssn) P,Q, J ::= B | emp | E 7→ E | E Z⇒ E
| TpU | P ∗Q | P ∧Q | P ∨Q | . . .

(RelAct) R,G ::= P nk Q | [P] | D
| bGc0 | G ∧G | G ∨G | . . .

(DAct) D ::= P ; Q | ∀x.D | D ∧ D
(FullAssn) p, q ::= P | arem(C) | ♦(E) | �(Ek, . . . , E1)

| bpc♦ | p ∗ q | p ∧ q | p ∨ q | . . .

Figure 4. Syntax of the assertion language.

setting. Here P is a relational assertion that specifies the consistency
relation between the concrete data representation and the abstract
value. Similarly, R and G lift regular rely and guarantee conditions
to the binary setting, which now specify transitions of states at both
the concrete level and the abstract level. The definite action D is a
special form of state transitions used for progress reasoning. The
definitions of P , R, G and D are shown in Sec. 4.1.

Note LiLi is a logic for concurrent objects Π only. We do not
provide logic rules for clients. See Sec. 5 for more discussions.

To simplify the presentation in this paper, we describe LiLi based
on the plain Rely-Guarantee Logic [18]. Also, to avoid “variables as
resources” [27], we assume program variables are either thread-local
or read-only. The full version of LiLi (see TR [22]) extends the more
advanced Rely-Guarantee-based logic LRG [7] to support dynamic
allocation and ownership transfer. It also drops the assumption about
program variables.

4.1 Assertions
We define assertions in Fig. 4. The relational state assertions P
and Q specify the relationship between the concrete state σ and the
abstract state Σ. Here we use s and h for the store and the heap at the
abstract level (see Fig. 3). For simplicity, we assume the program
variables used in the concrete code are different from those in the
abstract code (e.g., we use x and X at the concrete and abstract levels
respectively). We use the relational state S to represent the pair of
states (σ,Σ), as defined in Fig. 5.

Figure 5(a) defines semantics of state assertions. The boolean
expression B holds if it evaluates to true at the combined store
of s and s. emp describes empty heaps. The assertion E1 7→ E2

specifies a singleton heap at the concrete level with the value of
the expression E2 stored at the location E1. Its counterpart for
an abstract level heap is represented as E1 Z⇒ E2. Semantics of
separating conjunction P ∗Q is similar as in separation logic, except
that it is now lifted to relational states S. The disjoint union of two
relational states is defined at the top of the figure. Semantics of the
assertion TpU will be defined latter (see Fig. 5(c)).

Rely/guarantee assertions R and G specify the transitions over
the relational states S. Their semantics is defined in Fig. 5(b). The
action P nkQ says that the initial relational states satisfy P and the
resulting states satisfy Q. We can ignore the index k for now, which
is used to stratify actions that may delay the progress of other threads
and will be explained in Sec. 4.3. [P] specifies identity transitions
with the initial states satisfying P . Semantics of bGc0 is defined
in Sec. 4.3 too (see Fig. 10). Below we use P nQ as a shorthand
for P n0 Q. We also use Id for [true], which represents arbitrary
identity transitions.

We further instrument the relational state assertions with the
specifications of the abstract level code and various tokens. The
resulting full assertions p and q are defined in Fig. 4, whose
semantics is given in Fig. 5(c). The assertion p is interpreted
over (S, (u,w), C). C is the abstract-level code that remains to
be refined. It is specified by the assertion arem(C). Since our
logic verifies linearizability of objects, C is always in the form
of atomic commands 〈C′〉 (ahead of return commands). The pair

S ::= (σ,Σ) (σ,Σ)] (σ′,Σ′)
def
= (σ] σ′,Σ] Σ′)

where (s, h)](s′, h′)
def
= (s, h]h′) , if s=s′

((s, h), (s,h)) |= B iff JBKs]s = true
((s, h), (s,h)) |= emp iff dom(h) = dom(h) = ∅
((s, h), (s,h)) |= E1 7→ E2 iff h = {JE1Ks]s ; JE2Ks]s}
((s, h), (s,h)) |= E1 Z⇒ E2 iff h = {JE1Ks]s ; JE2Ks]s}
S |= P ∗Q iff ∃S1,S2.S = S1]S2

∧(S1 |= P) ∧ (S2 |= Q)

(a) semantics of relational state assertions P and Q

(S,S′) |= P nk Q iff (S |= P) ∧ (S′ |= Q)

(S,S′) |= [P] iff (S′ = S) ∧ (S |= P)

(b) semantics of relational rely/guarantee assertions R and G

(S, (u,w), C) |= P iff S |= P

(S, (u,w), C) |= arem(C′) iff C = C′

(S, (u,w), C) |= ♦(E) iff ∃n. (JEKS.s = n) ∧ (n ≤ w)

(S, (u,w), C) |= �(Ek, . . . , E1) iff (JEkKS.s, . . . , JE1KS.s) ≤ u
(S, (u,w), C) |= bpc♦ iff ∃w′. (S, (u,w′), C) |= p

S |= TpU iff ∃u,w,C. (S, (u,w), C) |= p

C] C′ def
=

{
C′ if C = skip
C if C′ = skip

(S, (u,w), C)](S′, (u′, w′), C′)
def
= (S]S′, (u+u′, w+w′), C]C′)

(c) semantics of full assertions p and q

Figure 5. Semantics of assertions.

(u,w) records the numbers of various tokens � and ♦. It serves
as a well-founded metric for our progress reasoning. Informally w
specifies the upper bound of the number of loop rounds that the
current thread can execute if it is neither blocked nor delayed by its
environment. The assertion ♦(E) says the number w of ♦-tokens is
no less than E. Therefore ♦(0) always holds, and ♦(n+ 1) implies
♦(n) for any n. We postpone the explanation of u and the assertion
�(Ek, . . . , E1) to Sec. 4.3. Below we use ♦ as the shorthand for
♦(1). We use bpc♦ to ignore the descriptions in p about the number
of ♦-tokens. TpU converts p back to a relational state assertion.

Separating conjunction p ∗ q has the standard meaning as in
separation logic, which says p and q hold over disjoint parts of
(S, (u,w), C) respectively (the formal definition elided here). The
disjoint union is defined in Fig. 5(c). The disjoint union of the
numbers of tokens is the sum of them. The disjoint union of C1

and C2 is defined only if at least one of them is skip. Therefore we
know the following holds (for any P and C):

(P ∧ arem(C) ∧ ♦) ∗ (♦ ∧ emp) ⇔ (P ∧ arem(C) ∧ ♦(2))

Definite actions. Fig. 4 also defines definite actions D, which
can be treated as special forms of rely/guarantee conditions. Their
semantics is given in Fig. 6(a). P ; Q specifies the transitions
where the final states satisfy Q if the initial states satisfy P . It is
different from P nQ in that P ; Q does not restrict the transitions
if initially P does not hold. Consider the following example Dx.

Dx
def
= ∀n. ((x 7→ n) ∧ (n > 0)) ; (x 7→ n+ 1)

Dx describes the state transitions which increment x if x is positive
initially. It is satisfied by any transitions where initially x is not
positive. The conjunctionD1∧D2 is useful for enumerating definite
actions. For instance, when the program uses two locks L1 and L2,

390

(S,S′) |= P ; Q iff (S |= P) =⇒ (S′ |= Q)

(S,S′) |= ∀x.D iff ∀n. (S{x; n},S′{x; n}) |= D
(S,S′) |= D1 ∧ D2 iff ((S,S′) |= D1) ∧ ((S,S′) |= D2)

(a) semantics of D

Enabled(P ; Q)
def
= P

Enabled(∀x.D)
def
= ∃x. Enabled(D)

Enabled(D1 ∧ D2)
def
= Enabled(D1) ∨ Enabled(D2)

〈D〉 def
= D ∧ (Enabled(D) n true)

[D]
def
= Enabled(D) ; Enabled(D)

D′ 6 D iff (Enabled(D′)⇒ Enabled(D)) ∧ (D ⇒ D′)

(b) useful syntactic sugars

Figure 6. Semantics of definite actions.

the definite action D of the whole program is usually in the form of
D1 ∧ D2, where D1 and D2 specify L1 and L2 respectively.

We define some useful syntactic sugars in Fig. 6(b). The state
assertion Enabled(D) takes the guard condition of D. We use 〈D〉
to represent the state transitions ofD when it is enabled at the initial
state. Intuitively 〈D〉 gives us the corresponding “n” actions. For
instance, 〈P ; Q〉 is equivalent to P n Q. For the example Dx

defined above, 〈Dx〉 is equivalent to the following:

∃n. ((x 7→ n) ∧ (n > 0)) n (x 7→ n+ 1)

In addition, we define the syntactic sugar [D] as a definite action
describing the preservation of Enabled(D). For the example Dx

above, [Dx] represents the following definite action:

(∃n. (x 7→ n) ∧ (n > 0)) ; (∃n. (x 7→ n) ∧ (n > 0))

It specifies the transitions which keep x positive if it is positive
initially. The notation D′ 6 D will be explained later in Sec. 4.2.2.
Since D is a special rely/guarantee assertion, the semantics of
D ⇒ D′ follows the standard meaning of R ⇒ R′ [7] (or see
the definition in Fig. 10).

Thread IDs as implicit assertion parameters. All the assertions
in our logic, including state assertions, rely/guarantee conditions
and definite actions, are implicitly parametrized over thread IDs.
Although our logic does modular reasoning about the object code
without any knowledge about clients, it is useful for assertions to
refer to thread IDs. For instance, we may use L 7→ t to represent
that the lock L is acquired by the thread t. We use Pt to represent the
instantiation of the thread ID parameter in P with t, which means
P holds on thread t. Then P alone can also be understood as ∀t.Pt,
and P ⇒ Q can be viewed as ∀t.Pt ⇒ Qt. The same convention
applies to rely/guarantee conditions and definite actions.

4.2 Verifying Starvation-Freedom with Definite Actions
Figure 7 presents the inference rules of LiLi. We explain the logic in
two steps. In this subsection we explain the use of definite actions
to reason about starvation-freedom. Then we explain the delay
mechanism for deadlock-freedom in Sec. 4.3.

4.2.1 The OBJ Rule
The OBJ rule requires that each method in Π refine its atomic
specification in Γ. Starting from the initial concrete and abstract
object states related by P , and with the equivalent method arguments
x and y at the concrete and the abstract levels, the method body C
must fulfill the abstract atomic operation C′. We can temporarily
ignore the assertion �(Ek, . . . , E1) for deadlock-freedom.

The last three premises of the OBJ rule check the well-formedness
of the specifications. The first one says the guarantee of one
thread must imply the rely of all others, a standard requirement in
rely/guarantee reasoning. In Fig. 8 we give a simplified definition of
wffAct used in the second premise. Its complete definition is given
in Fig. 11, which will be explained later when we introduce stratified
actions and �-tokens. wffAct(R,D) says once a definite action Dt

of a thread t is enabled it cannot be disabled by an environment step
in Rt. Also such an environment step either fulfills a definite action
Dt′ of some thread t′ different from t, or preserves Enabled(Dt′)
too. Together with the previous premise Gt′ ⇒ Rt, this condition
implies ∀t′. Gt′ ⇒ [Dt′] ∨ Dt′ . Therefore, once Dt is enabled, the
only way to disable it is to let the thread t finish the action. As an
example, consider the following Dt:

Dt
def
= (L 7→ t) ; (L 7→ 0)

It says that whenever a thread t acquires the lock L, it will finally
release the lock. Then, wffAct(R,D) requires that when t acquires
L, every step in the system either keeps L unchanged or releases L.
In particular, Rt keeps L unchanged, that is, the environment cannot
update the lock when L 7→ t.

The last premise (P ⇒ ¬Enabled(D)) says there cannot be
enabled but unfinished definite actions when the method terminates
and the object invariant P is true.

The judgment D, R,G ` {p ∧ arem(C′)}C{q ∧ arem(skip)}
establishes a simulation relation between C and C′, which ensures
the preservation of termination when the environment guarantees the
definite action D. It also ensures the execution of C guarantees D
too. We explain the key rules for the judgment below. The complete
set of rules are presented in TR [22].

4.2.2 The WHL Rule for Loops
The WHL rule, shown in Fig. 7, is the most important rule of the
logic. It establishes both of the following properties of the loop:

(1) it cannot loop forever with D continuously enabled;

(2) it cannot loop forever unless the current thread is waiting for
some definite actions of its environment.

The former guarantees that a definite action of the current thread
will definitely happen once it is enabled. The latter is crucial to
establish the starvation-freedom.

Why definite actions are definite. The WHL verifies the loop
body with a precondition p′, which can be derived from the loop
invariant p if B holds. Moreover, we require each iteration to
consume a ♦-token if Enabled(D) holds at the beginning, as shown
by the second premise (ignore the assertion Q for now). Since each
thread has only a finite number of ♦-tokens, the loop must terminate
if Enabled(D) is continuously true.

However, the last premise of the OBJ rule says Enabled(D)
cannot be true when the method terminates. Therefore, Enabled(D)
cannot be continuously true. Also recall the other two side conditions
(wffAct(R,D) and Gt ⇒ Rt′) of the OBJ rule guarantee that, once
Enabled(D) holds, the only way to make it false is to let the current
thread finish the action.

Putting all these together, we know D will be finished once it is
enabled, even with the interference R.

Starvation-freedom. To establish starvation-freedom, we need to
find a conditionQ saying the current thread is not blocked by others.
Then the second premise requires each iteration to consume a ♦-
token if Q holds at the beginning. Since the number of tokens is
finite, the loop must terminate if Q always holds.

If Q is false, the current thread is blocked by others, and it does
not need to consume ♦-tokens. Then the premise (R,G : D′ f−→Q)

391

for all f ∈ dom(Π) : Π(f) = (x,C) Γ(f) = (y, C′) dom(Π) = dom(Γ)
D, R,G ` {P ∧ (x = y) ∧ arem(C′) ∧ �(Ek, . . . , E1)}C{P ∧ arem(skip)}

∀t, t′. t 6= t′ =⇒ Gt ⇒ Rt′ wffAct(R,D) P ⇒ ¬Enabled(D)

D, R,G ` {P}Π�Γ
(OBJ)

p ∧B ⇒ p′ p ∧B ∧ (Enabled(D) ∨Q)⇒ p′ ∗ (♦ ∧ emp) D, R,G ` {p′}C{p}
p⇒ J Sta(J,R ∨G) D′ 6 D wffAct(R,D′) J ⇒ (R,G : D′ f−→Q)

D, R,G ` {p}while (B){C}{p ∧ ¬B}
(WHL)

D, R,G ` {p}C{q}
D, R,G ` {bpc♦}C{bqc♦}

(HIDE-♦)

` [p]C[q′] q′ Vk q (TpU nk TqU)⇒ G

D, Id, G ` {p}〈C〉{q}
(ATOM)

D, Id, G ` {p}〈C〉{q} Sta({p, q}, R)

D, R,G ` {p}〈C〉{q}
(ATOM-R)

Figure 7. Inference rules.

requires the thread be waiting for its environment to perform a finite
number of definite actions.

Definition 1 (Definite Progress). S |= (R,G : D f−→Q) iff the
following hold for all t:

(1) either S |= Qt,
or there exists t′ such that t′ 6= t and S |= Enabled(Dt′);

(2) for any t′ 6= t and S′, if (S,S′, 0) |= Rt ∧ 〈Dt′〉, then
ft(S

′) < ft(S);
(3) for any S′, if (S,S′, 0) |= Rt ∨Gt, then ft(S

′) ≤ ft(S).

Here f is a function that maps the relational states S to some metrics
over which there is a well-founded order <.

Ignoring the index 0 above, the definition says either Q holds
over S or the definite action Dt′ of some environment thread t′

is enabled. Also we require the metric f(S) to decrease when
a definite action is performed. Besides, the metric should never
increase at any step of the execution.

To ensure that the metric f decreases regardless of the time when
the environment’s definite actions take place, the definite progress
should always hold. This is enforced by finding a stronger assertion
J such that p⇒ J and Sta(J,R∨G) hold, that is, J is an invariant
that holds at every program point of the loop. If (R,G : D f−→Q)

happens to satisfy the two premises, we can use (R,G : D f−→Q)
directly as J , but in practice it could be easier to prove the stability
requirement by finding a stronger J . The definition of stability
Sta(p,R) is given in Fig. 8.

Notice in (R,G : D′ f−→ Q) we can use D′ instead of D to
simplify the proof, as long as D′ 6 D and wffAct(R,D′) are
satisfied. The premise D′ 6 D, defined in Fig. 6, says D′ specifies
a subset of definite actions in D. For instance, if D consists of
multiple definite actions and is in the form of D1 ∧ . . . ∧ Dn, D′
may contain only a subset of these Dk (1 ≤ k ≤ n). The way to
exclude in D′ irrelevant definite actions can simplify the proof of
the condition (2) of definite progress (see Definition 1).

Given the definite progress condition, we know Q will be
eventually true because each definite action will definitely happen.
Then the loop starts to consume ♦-tokens and needs to finally
terminate, following our argument at the beginning.

4.2.3 More Inference Rules
The HIDE-♦ rule allows us to discard the tokens (by using b c♦)
when the termination of code C is already established, which is
useful for modular verification of nested loops.

ATOM rules for refinement reasoning. The ATOM rule allows us
to logically execute the abstract code simultaneously with every
concrete step (let’s first ignore the index k in the premises of the
rule). We use ` [p]C[q] to represent the total correctness of C in

wffAct(R,D) iff ∀t. Rt ⇒ [Dt] ∧ (∀t′ 6= t. [Dt′] ∨ Dt′)

Sta(p,R) iff ∀S,S′, u, w,C.
((S, (u,w), C) |= p) ∧ ((S,S′) |= R) =⇒ (S′, (u,w), C) |= p

pV q iff ∀t, σ,Σ, u, w,C,ΣF .
(((σ,Σ), (u,w), C) |= p) ∧ (Σ⊥ΣF) =⇒ ∃C′,Σ′.

((C,Σ]ΣF) −_∗t (C′,Σ′]ΣF)) ∧ ((σ,Σ′), (u,w), C′) |=q

Figure 8. Auxiliary defs. used in logic rules (simplified version).

sequential separation logic. The corresponding rules are standard
and elided here. We use p V q for the zero or multiple-step
executions from the abstract code specified by p to the code specified
by q, which is defined in Fig. 8. Then, the ATOM rule allows us to
execute zero-or-more steps of the abstract code with the execution
of C, as long as the overall transition (including the abstract steps
and the concrete steps) satisfies the relational guarantee G. We can
lift C’s total correctness to the concurrent setting as long as the
environment consists of identity transitions only. To allow a weaker
R, we can apply the ATOM-R rule later, which requires that the pre-
and post-conditions be stable with respect to R.

4.2.4 Example: Ticket Locks
We prove the starvation-freedom of the ticket lock implementation
in Fig. 9 using our logic rules. We have informally discussed in
Sec. 2 the verification of the counter using a ticket lock (sfInc in
Fig. 1(c)). To simplify the presentation, here we erase the increment
in the critical section and focus on the progress property of the code
in Fig. 9. With an empty critical section, the code functions just as
skip, so Fig. 9 proves it is linearizable with respect to skip. The
proofs of sfInc (including its starvation-freedom and linearizability
with respect to the atomic INC in Fig. 1(a)) are given in TR [22].

To help specify the queue of the threads requesting the lock, we
introduce an auxiliary array ticket. As shown in Fig. 9, each array
cell ticket[i] records the ID of the unique thread which gets the
ticket number i. Here we use cid for the current thread ID.

We then define some predicates to describe the lock status.
lock(tl, n1, n2) contains the auxiliary ticket array in addition to
owner and next, where owner 7→ n1 and next 7→ n2, and tl is
the list of the threads recorded in ticket[n1], . . . , ticket[n2− 1].
We also use locked(tl, n1, n2) for the case when tl is not empty.
That is, the lock is acquired by the first thread in tl, while the
other threads in tl are waiting for the lock in order. Besides, we use
lockIrrt(tl, n1, n2) short for lock(tl, n1, n2) ∧ (t 6∈ tl). That is, the
thread t is “irrelevant” to the lock: it does not request the lock. The
formal definitions are given in TR [22].

The bottom of Fig. 9 defines the precondition P and the guaran-
tee conditionG of the code.Gt specifies the possible atomic actions
of a thread t. Lock t adds the thread t at the end of tl of the threads
requesting the lock and increments next. It corresponds to line 2

392

1 local i, o, r;

2 <i := getAndInc(next); ticket[i] := cid >;

3 o := [owner]; while (i != o) { o := [owner]; }
4 [owner] := i + 1;

Pt
def
= ∃tl, n1, n2. lockIrrt(tl, n1, n2) Gt

def
= Lockt ∨ Unlockt

Lockt
def
= ∃tl, n1, n2. lockIrrt(tl, n1, n2) n locked(tl :: t, n1, n2 + 1)

Unlockt
def
= ∃tl, n1, n2. locked(t :: tl, n1, n2) n lockIrrt(tl, n1+1, n2)

Dt
def
= ∀tl, n1, n2. locked(t :: tl, n1, n2) ; lockIrrt(tl, n1 + 1, n2)

Jt
def
= ∃n1, n2, tl1, tl2. tlockedtl1,t,tl2 (n1, i, n2) ∧ (o ≤ n1)

Qt
def
= ∃n2, tl2. locked(t :: tl2, i, n2) ∧ (o ≤ i)

f(S) = k iff S |= ∃n1. (owner 7→ n1) ∗ true ∧ (i− n1 = k)

Figure 9. Proofs for the ticket lock (with auxiliary code in gray).

of Fig. 9. Unlock t releases the lock by incrementing owner and de-
queuing the thread t which currently holds the lock. It corresponds
to line 4 of Fig. 9. The rely condition Rt includes all the Gt′ made
by the environment threads t′.

Next we define the definite action D. As we explained in
Sec. 2, Dt requires that whenever the thread t holds a lock with
owner 7→ n1, it should eventually release the lock by incrementing
owner to n1 + 1. We can prove the side conditions about well-
formedness of specifications in the OBJ rule hold.

The key to verifying the loop at line 3 is to find a metric
function f and prove definite progress J ⇒ (R,G′ : D f−→Q) for a
stable J . As shown in Fig. 9, we define Jt to say that the thread
t is requesting the lock. Here tlockedtl1,t,tl2(n1, i, n2) is similar
to locked(tl1 :: t :: tl2, n1, n2). It also says that the thread t takes
the ticket number i. Qt specifies the case when tl1 is empty (thus
owner 7→ i). We also strengthen the guarantee condition G′ of the
loop to Id, the identity transitions.

The metric function f maps each state S to the difference
between i and owner at that state, which describes the number
of threads ahead of t in the waiting queue. We use the usual < order
on natural numbers as the associated well-founded order. Then, we
can verify J ⇒ (R,G′ : D f−→Q).

Finally, we prove that the loop terminates with one ♦-token when
Q holds or D is enabled. Then we can conclude linearizability and
starvation-freedom of the ticket lock implementation in Fig. 9.

4.3 Adding Delay for Deadlock-Free Objects
As we explained in Sec. 2, deadlock-free objects allow the progress
of a thread to be delayed by its environment, as long as the whole
system makes progress. Correspondingly, to verify deadlock-free
objects, we extend our logic with a delay mechanism. First we find
out the delaying actions and stratify them for objects with rollbacks
where a delaying action may trigger more steps of other delaying
actions. Then, we introduce �-tokens (we use � here to distinguish
them from ♦-tokens for loops) to bound the number of delaying
actions in each method, so we avoid infinite delays without whole-
system progress.

Multi-level rely/guarantee assertions. As shown in Fig. 4, we
index the rely/guarantee assertion P nk Q with a natural number k
and call it a level-k action. We require 0 ≤ k < maxL, where maxL
is a predefined upper bound of all levels. Intuitively, P nk Q could
make other threads do more actions at a level k′ < k. Thus P n0 Q
cannot make other threads do any more actions, i.e., it cannot delay
other threads. P n1 Q could make other threads do more actions
at level 0 but no more at level 1, thus we avoid the problem of
delay-caused circular dependency discussed in Sec. 2.2.2.

L((S,S′), P nk Q)
def
=

{
k if (S,S′) |= P nk Q
maxL otherwise

L((S,S′), [P])
def
=

{
0 if (S,S′) |= [P]
maxL otherwise

L((S,S′),D)
def
=

{
0 if (S,S′) |= D
maxL otherwise

L((S,S′), R ∧R′) def
= max(L((S,S′), R),L((S,S′), R′))

L((S,S′), R ∨R′) def
= min(L((S,S′), R),L((S,S′), R′))

L((S,S′), bRc0)
def
=

{
0 if L((S,S′), R) = 0
maxL otherwise

(S,S′) |= bRc0 iff L((S,S′), R) = 0

(S,S′, k) |= R iff L((S,S′), R) = k and k < maxL

R⇒ R′ iff ∀S,S′, k. ((S,S′, k) |= R) =⇒ (S,S′, k) |= R′

u ::= (nk, . . . , n1) (1 ≤ k < maxL)

(n′m, . . . , n
′
1) <k (nm, . . . , n1) iff (∀i > k. (n′i = ni)) ∧ (n′k < nk)

(n′m, . . . , n
′
1) ≈k (nm, . . . , n1) iff (∀i ≥ k. (n′i = ni))

u < u′ iff ∃k. u <k u
′ u ≤ u′ iff u < u′ ∨ u = u′

(u,w) <k (u′, w′) iff (u <k u
′) ∨ (k = 0 ∧ u = u′ ∧ w = w′)

(u,w) ≈k (u′, w′) iff u ≈k u
′ ∧ (k = 0 =⇒ w = w′)

Figure 10. Levels of state transitions and tokens.

To interpret the level numbers in the assertion semantics, we de-
fine L((S,S′), R) in Fig. 10 which assigns a level to the transition
(S,S′), given the specification R. That is, if L((S,S′), R) = k,
we say R views (S,S′) as a level-k transition. We let k = maxL if
the transition does not satisfy R. Given the level function, we can
now define the semantics of bRc0, which picks out the transitions
that R views as level-0 ones. For the following example R,

R
def
= (P n0 Q) ∨ (P ′ n1 Q′)

bRc0 is equivalent to P n0 Q. Besides, R ⇒ bRc0 means that R
views all state transitions as level-0 ones, thus any state transitions
of R should not delay the progress of other threads.

We use (S,S′, k) |= R as a shorthand for L((S,S′), R) = k
(k < maxL). Then the implication R⇒ R′ is redefined under this
new interpretation, as shown in Fig. 10.

�-tokens in assertions. To ensure the progress of the whole
system, we require the steps of delaying actions to pay �-tokens.
Since we allow multi-levels of transitions to delay other threads,
the �-tokens are stratified accordingly. Thus we introduce the new
assertion �(Ek, . . . , E1) in Fig. 4, whose semantics is defined in
Fig. 5. It says the number of each level-j �-tokens is no less than
Ej . Here u is a sequence (nk, . . . , n1) recording the numbers of �-
tokens at different levels, as defined in Fig. 10. We overload< as the
dictionary order for the sequence of natural numbers. The ordering
over u and other related definitions are also given in Fig. 10.

4.3.1 Inference Rules Revisited
To use the logic to verify deadlock-free objects, we need to first
find in each object method the actions that may delay the progress
of others. Since some of these actions may be further delayed by
others, we assign levels to them to ensure each action can only be
delayed by ones at higher levels. We specify the actions and their
levels in the rely/guarantee conditions. We also need to decide an
upper bound of these execution steps at each level and specify them
as the number of �-tokens in the precondition of each method.

Below we revisit the inference rules in Fig. 7 and explain their use
of multi-level actions and�-tokens. In the OBJ rule, we specify in the

393

wffAct(R,D) iff ∀t. bRtc0 ⇒ [Dt] ∧ (∀t′ 6= t. [Dt′] ∨ Dt′)

pVk q iff ∀t, σ,Σ, u, w,C,ΣF .
(((σ,Σ), (u,w), C) |= p) ∧ (Σ⊥ΣF) =⇒ ∃u′, w′, C′,Σ′.
((C,Σ]ΣF) −_∗t (C′,Σ′]ΣF)) ∧ (((σ,Σ′), (u′, w′), C′) |= q)
∧ (u′, w′) <k (u,w) (<k defined in Fig. 10)

Sta(p,R) iff ∀S,S′, u, w,C, k.
((S, (u,w), C) |= p) ∧ ((S,S′, k) |= R) =⇒ ∃u′, w′.
((S′, (u′, w′), C) |= p) ∧ ((u′, w′) ≈k (u,w))

where ≈k is defined in Fig. 10.

Figure 11. Key auxiliary definitions for inference rules (final
version that supersedes definitions in Fig. 8).

precondition the number of �-tokens needed for each object method.
The side condition wffAct(R,D) is also redefined in Fig. 11, which
is explained below.

Decreasing �-tokens at the ATOM rule. The thread loses �-
tokens when it performs an action that may delay other threads. This
is required by the ATOM rule. Depending on whether the atomic
command may delay others or not, we assign a level k in the premise
q′ Vk q, which is redefined in Fig. 11. Similar to pV q in Fig. 8,
it allows us to execute the abstract code. Now it also requires the
number of �-tokens at level k to be decreased if k ≥ 1.

Note k cannot be arbitrarily chosen. The assignment of the
level k to the atomic operation must be consistent with the level
specification in G, as required by the third premise.

Being delayed: increasing tokens at stability checking. When
the progress of the thread t is delayed by a level-k (k ≥ 1) action
from its environment thread t′, thread t could gain more ♦-tokens
to do more loop iterations. It could also gain more level-k′ (k′ < k)
�-tokens to execute more level-k′ actions. Here increasing tokens
would not affect the soundness of our logic because the environment
thread t′ must pay a higher-level token for its higher-level delaying
action. As we explained in Sec. 2.3.4, the �-tokens at all levels in
the whole system actually form a tuple which strictly descends along
the dictionary order, ensuring the whole-system progress.

We re-define the stability Sta(p,R) in Fig. 11 to reflect the
possible increasing of tokens for the thread t. We could reset w and
the number at level k′ < k in u after the environment step R if this
step is associated with a level k (k ≥ 1).

Allowing queue jumps at definite progress and wffAct. As we
explained in Sec. 2.3.3, for deadlock-free objects, the environment
steps could cause queue jumps to delay the progress of the thread t.
Like starvation-free objects, the thread t using deadlock-free objects
may wait for a queue of definite actions made by its environment. A
queue jump would make the thread t wait for a longer queue of the
environment’s definite actions.

As shown in Definition 1, the definite progress condition (R,G :

D f−→Q) allows the thread to reset its metric f(S) for a queue jump
when the environment step is associated with level k ≥ 1 (i.e., it is
a delaying action). In this case, although the current thread may be
blocked for a longer time, the whole system must progress since a
�-token is paid by the environment thread for the delaying action.

Also the requirement wffAct(R,D) (used at the OBJ rule and
the WHL rule) should be revised to allow queue jumps. The new
definition is shown in Fig. 11. Here we allow a queue jump to disable
the definite action D of the thread at the head of the queue, so it
is not necessary to require Enabled(D) to be preserved when the
environment step is associated with level k ≥ 1.

4.3.2 Example: Test-and-Set Locks
In Fig. 12, we verify the test-and-set lock implementation explained
in Sec. 2. Like the ticket lock proofs in Sec. 4.2.4, we simplify the

lockedt
def
= (L 7→ t) envLockedt

def
= ∃t′. lockedt′ ∧ (t′ 6= t)

unlocked
def
= (L 7→ 0) notOwnt

def
= unlocked ∨ envLockedt

Gt
def
= Lockt ∨ Unlockt

Lockt
def
= unlocked n1 lockedt Unlockt

def
= lockedt n0 unlocked

Dt
def
= lockedt ; unlocked Jt

def
= notOwnt ∨ lockedt

Qt
def
= unlocked ∨ lockedt ft(S) =

{
1 if S |= envLockedt

0 if S |= Qt{
notOwncid ∧ �

}
1 local b := false;{

((¬b) ∧ notOwncid ∧ � ∧ ♦) ∨ (b ∧ lockedcid)
}

2 while (!b) {{
(unlocked ∧ �) ∨ (envLockedcid ∧ � ∧ ♦)

}
3 b := cas(L, 0, cid);{

(b ∧ lockedcid) ∨ ((¬b) ∧ notOwncid ∧ � ∧ ♦)
}

4 }{
lockedcid

}
5 [L] := 0;{

notOwncid
}

Figure 12. Proofs for the TAS lock.

code and prove it is linearizable with respect to skip. Here we omit
the assertion arem(skip) at each line in the proof, and focus on
proving deadlock-freedom of the code.

As defined at the top of Fig. 12, the action Lockt (corresponding
to the successful cas at line 3) is at level 1, which may delay other
threads trying to acquire the lock. The Unlockt action is at level 0,
which cannot delay other threads. Also the precondition is given a
�-token, which is required to pay for the Lockt action.

The definite action D simply says that the thread t would
eventually release the lock when it acquires the lock. It is easy
to check that the side conditions about R, G and D in the OBJ rule,
e.g., wffAct(R,D), are satisfied.
R,G : D f−→Q specifies the queue of definite actions which now

contains at most one environment thread. That is, the metric f(S)
is 1 if the lock is not available, and is 0 otherwise. When an
environment thread t′ cuts in line by acquiring the lock when the
lock is free, the current thread t has to wait for Dt′ before t itself
progresses. Thus in R,G : D f−→Q the current thread t can reset its
metric f(S) when its environment acquires the lock.

The detailed proof at the bottom of Fig. 12 shows the changes of
tokens. We give the current thread one ♦-token (using the HIDE-♦
rule) to do its loop at lines 2-4. It consumes this ♦-token at the
beginning of the loop body when Q holds, as shown in the left
branch of the assertion p before line 3. When Q does not hold, as
shown in p’s right branch, the loop does not consume the ♦-token.

Next we stabilize p. For the left branch, if an environment thread
t′ acquires the lock, which is a delaying action Lock t′ , we let the
current thread regain a ♦-token. The resulting state just satisfies the
right branch of p. Thus p is already stable.

The current thread pays its �-token when its cas at line 3
succeeds (i.e., it acquires the lock), as shown in the left branch
of the assertion after line 3. If the cas fails, the thread still has � to
acquire the lock in the future and ♦ to try one more iteration.

4.3.3 Another Example: Nested Locks with Rollback
To demonstrate the use of action levels, we verify the rollback code
in Fig. 2(b) which we informally discussed in Sec. 2. Here we
assume all the methods of the object either acquire L1 before L2 (as
in the method of Fig. 2(b)), or acquire only one lock.

Stratified delaying actions. As in the TAS lock example in
Sec. 4.3.2, lock acquirements are delaying actions. Here we have

394

Gt
def
= Lock2 t ∨ Lock1 t ∨ Lock0 t ∨ Unlock2 t ∨ Unlock1 t

Lock2 t
def
= (unlocked(L2) n2 lockedt(L2)) ∗ [L1 7→]

Lock1 t
def
= (unlocked(L1) n1 lockedt(L1)) ∗ [unlocked(L2)]

Lock0 t
def
= (unlocked(L1) n0 lockedt(L1)) ∗ [envLockedt(L2)]

Unlock2 t
def
= (lockedt(L2) n0 unlocked(L2)) ∗ [L1 7→]

Unlock1 t
def
= (lockedt(L1) n0 unlocked(L1)) ∗ [L2 7→]

Dt
def
= D2t ∧ D1t

D2t
def
= ∀s. lockedt(L2) ∗ (L1 7→ s) ; unlocked(L2) ∗ (L1 7→ s)

D1t
def
= lockedt(L1) ∗ unlocked(L2) ; unlocked(L1) ∗ unlocked(L2)

Figure 13. Multi-level actions for the example in Fig. 2(b).

{
notOwncid(L1) ∗ notOwncid(L2) ∧ �(1, 1)

}
1 lock L1;

p1
def
=

{
lockedcid(L1) ∗ (unlocked(L2) ∧ �(1, 0)

∨ envLockedcid(L2) ∧ �(1, 1))

}
2 local r := L2;{

lockedcid(L1) ∗ notOwncid(L2)
∧ ((r = 0) ∧ �(1, 0) ∨ (r 6= 0) ∧ �(1, 1) ∧ ♦)

}
3 while (r != 0) {

p2
def
=

{
lockedcid(L1)
∗ (unlocked(L2) ∨ envLockedcid(L2) ∧ ♦) ∧ �(1, 1)

}
4 unlock L1;
5 lock L1;{

lockedcid(L1) ∗ (unlocked(L2) ∧ �(1, 0)
∨ envLockedcid(L2) ∧ �(1, 1) ∧ ♦)

}
6 r := L2;{

lockedcid(L1) ∗ notOwncid(L2)
∧ ((r = 0) ∧ �(1, 0) ∨ (r = 1) ∧ �(1, 1) ∧ ♦)

}
7 }{

lockedcid(L1) ∗ notOwncid(L2) ∧ �(1, 0)
}

8 lock L2;{
lockedcid(L1) ∗ lockedcid(L2)

}
9 unlock L2;

10 unlock L1;{
notOwncid(L1) ∗ notOwncid(L2)

}
Qt

def
= (lockedt(L1) ∨ unlocked(L1)) ∗ unlocked(L2)

Figure 14. Proof outline for the rollback example in Fig. 2(b).

two locks L1 and L2, and a thread may roll back and re-acquire L1
if its environment owns L2. To support the rollbacks, we stratify
the delaying actions and �-tokens in two levels. Acquirements of
L2 are at level 2, defined as Lock2 in Fig. 13, which may trigger
rollbacks and more acquirements of L1. Acquirements of L1 at
level 1 may delay other threads requesting L1, causing them to do
more non-delaying actions, but cannot reversely trigger more level-2
actions. Thus we avoid the circular delay problem.

However, acquirements of L1 in some special cases cannot
be viewed as delaying actions. Suppose L2 is acquired by an
environment thread t′ before the current thread t starts the method.
Then t would continuously roll back until t′ releases L2. It may
acquire L1 infinitely often. In this case, viewing all acquirements
of L1 as delaying actions would require t to pay �-tokens infinitely
often, and consequently require an infinite number of �-tokens be
assigned to the method at the beginning, which is impossible. To
address the problem, we define in Fig. 13 that acquiring L1 is a
level-1 action Lock1 only if L2 is free. When L2 is acquired by the
environment, we say the current thread is “blocked”, and we view
its acquirement of L1 as a non-delaying action Lock0 at level 0.

To simplify the presentation, the definitions in Fig. 13 follow the
notations in LRG [7], using “∗ [P]” to mean that the actions on the
irrelevant part P of the states are identity transitions.

p01
def
= unlocked(L1) ∗ unlocked(L2)

p02
def
= (unlocked(L1) ∗ envLockedcid(L2)) ∧ ♦

p03
def
= (envLockedcid(L1) ∗ notOwncid(L2)) ∧ ♦{
notOwncid(L1) ∗ notOwncid(L2) ∧ �(1, 1)

}
1 local b := false;{

(¬b) ∧ (notOwncid(L1) ∗ notOwncid(L2)) ∧ �(1, 1) ∧ ♦
∨ b ∧ p1

}
2 while (!b) {{

(p01 ∨ p02 ∨ p03) ∧ �(1, 1)
}

3 b := cas(L1, 0, cid);
b ∧ lockedcid(L1)
∗ (unlocked(L2) ∧ �(1, 0) ∨ envLockedcid(L2) ∧ �(1, 1))
∨ (¬b) ∧ ((unlocked(L1) ∨ envLockedcid(L1))

∗ notOwncid(L2)) ∧ �(1, 1) ∧ ♦

4 }{

p1
}

Figure 15. Proof outline for lock L1 in the rollback example.

Definite actions. There are two kinds of definite actions, which
release the two locks respectively. As shown in Fig. 13, D2 says a
thread holding L2 eventually releases it, regardless of the status of
the lock L1. D1 says L1 will be definitely released when L2 is free.
Note that a thread holding L1 may not be able to release the lock if
it cannot acquire L2.

Proof outline for the rollback. As shown in Fig. 14, when thread t
starts the method, it is given �(1, 1), where the level-2 �-token is for
doing Lock2 and the level-1 �-token is for Lock1 . The assertions
notOwn is defined similarly as in Fig. 12.

lock L1 at line 1 is implemented using the TAS lock, and its
detailed proof is in Fig. 15, which will be explained later. The
acquirement of L1 may or may not consume a level-1 �-token,
depending on whether L2 is free or not (see p1 in Fig. 14). If L2 is
free, line 1 is a Lock1 action, which consumes a token. Otherwise it
is a Lock0 action and the token is not consumed, allowing the thread
t to roll back and do Lock1 later. Then we stabilize the assertion.
For the left branch, when an environment thread acquires L2, i.e.,
the interference is at level 2, the thread t could re-gain the level-1
�-token, resulting in the right branch of the assertion. Stabilizing
the right branch gives us the whole p1 too. Thus p1 is stable.

Then thread t tests L2 at line 2 in Fig. 14. When r is not 0, thread
t goes into the loop at line 3. The Q for the loop is defined at the
bottom of Fig. 14, which says that thread t could terminate the loop
when L1 is not acquired by the environment and L2 is free. Before
line 3, we give the thread one ♦-token for the loop (applying the
HIDE-♦ rule). The token is consumed at the beginning of an iteration
when the above Q holds. Thus, the loop body (from line 4 to line 6)
is verified with the precondition p2. Note the thread still has one
♦-token if L2 is not available, because the loop does not consume
the token if Q does not hold. The token will be consumed at the
next round when L2 is free. On the other hand, stabilizing the left
branch of the above assertion p2 just gives us the whole p2: When
an environment thread acquires L2, thread t could re-gain a ♦-token.

Besides, the definite progress R,G : D f−→Q is verified as fol-
lows. When thread t is blocked (i.e., Q does not hold), there is a
queue of definite actions of the environment threads. The length of
the queue is at most 2, as shown by f defined below:

ft(S)
def
=

 2 if S |= envLockedt(L2) ∗ true
1 if S |= envLockedt(L1) ∗ unlocked(L2)
0 if S |= Q

When the environment thread t′ holding L2 releases the lock (i.e., it
does D2t′), the queue becomes shorter. Thread t only needs to wait
for the environment thread to release L1.

395

Acquirements of L1 in the rollback example. Finally we discuss
the proof of the implementation of lock L1 in Fig. 15. Here we use
the same Q in Fig. 14 to verify the loop. That is, we think the thread
is “blocked” if L2 is not available. Initially we give one ♦-token
for the loop. Depending on whether Q holds or not, there are three
cases (p01, p02 and p03) when we enter the loop. For the case p01,
the loop consumes the ♦-token because Q holds. For the other two
cases (p02 and p03), Q does not hold and the token is kept. Note
that stabilizing p01 results in p03 when the environment acquires L1:
Since L2 is free, the environment action is a level-1 delaying action
Lock1 , allowing the thread to re-gain the ♦-token.

For line 3, if b is true, we know p01 or p02 holds before the line.
Depending on whether L2 is available or not, the action may or
may not consume a level-1 �-token, following the same argument
as in line 1 in Fig. 14. If b is false, then p03 holds before the line.
Stabilizing this case results in the right branch of the postcondition
of line 3, with a ♦-token for the next round of loop.

It may seem strange that for the loop we do not use a Q′ def
=

lockedt(L1) ∨ unlocked(L1), i.e., the same Q as in Fig. 12. If we
use Q′ instead, then the case p02 before line 3 cannot have the
♦-token because Q′ is true in this case and the ♦-token needs
to be consumed by the loop. Thus p02 needs to be changed to
p′02

def
= envLockedcid(L1) ∗ notOwncid(L2). Stabilizing p′02 can no

longer give us p03 when the environment acquires L1, because the
acquirement action is Lock0 instead of Lock1 (since L2 is not free
in this case). The thread cannot re-gain the ♦-token in p03, so p03
cannot have the ♦-token either. As a result, we no longer have a
♦-token to pay for the next round of loop if the cas in line 3 fails.

5. Soundness and Abstraction Theorems
Our logic LiLi is a sound proof technique for concurrent objects
based on blocking algorithms, as shown by the following theorem.

Theorem 2 (Soundness). If D, R,G ` {P}Π : Γ, then

(1) both Π �lin
P Γ and deadlock-freeP (Π) hold; and

(2) if R⇒ bRc0 and G⇒ bGc0, then starvation-freeP (Π) holds.

Here Π �lin
P Γ describes linearizability of the object Π. Infor-

mally it says that Π has the same effects as the atomic operations
of Γ (assuming the initial object states satisfy P). The formal def-
inition is standard [15] and omitted here. deadlock-freeP (Π) and
starvation-freeP (Π) are the two progress properties defined follow-
ing their informal meanings [14] (or see Sec. 1).

Theorem 2 shows that LiLi ensures linearizability and deadlock-
freedom together, and it also ensures starvation-freedom when the
rely/guarantee specification of the object satisfies certain constraints.
The constraints R ⇒ bRc0 and G ⇒ bGc0 require R and G to
specify actions of level 0 only. That is, none of the object actions of a
thread could delay the progress of other threads. With the specialized
R and G, we can derive the progress of each single thread, which
gives us starvation-freedom.

Abstraction. The soundness theorem shows that our logic ensures
linearizability with respect to atomic operations. However, from the
client code’s point of view, the methods of deadlock-free objects
do not refine atomic operations when termination is concerned.
Consider the example below.

dfInc(); s:=1; while (s=0) dfInc();

INC; s:=1; while (s=0) INC;

The first line shows the client code using a lock-free counter,
while the second line uses an atomic counter (see Fig. 1 for the
implementation of counters). Assuming s=0 initially, it is easy to
see the first program may or may not terminate, but the second one
must terminate under fair scheduling. Therefore the first program

is not a termination-preserving refinement of the second one. Note
that if we replace dfInc with the starvation-free counter sfInc, the
first program must terminate too under fair scheduling.

We propose a novel “progress-aware” object specification wrl(Γ)
for deadlock-free objects that are linearizable with respect to Γ. As
defined below, wrl(Γ) wraps the atomic operations in Γ with some
auxiliary code for synchronization.

wrl(Γ)(f)
def
= (x, wrl(〈C〉); return E) if Γ(f) = (x, 〈C〉; return E)

wrl(〈C〉)
def
= local u1 := nondet(), u2 := nondet();

while(u1 >= 0) { lock l; unlock l; u1--; }
〈C〉;
while(u2 >= 0) { lock l; unlock l; u2--; }

Here we assume l is a fresh variable, i.e., l 6∈ fv(Π,Γ, P). The
wrapper function wrl inserts a finite (but arbitrary) number of lock-
acquire (lock l) and lock-release (unlock l) actions before and
after the atomic abstract code 〈C〉. The command u := nondet()
assigns to u a nondeterministic number. The lock l is a TAS lock
(implementation shown in Fig. 1(b)). Then the progress of a thread
executing wrl(Γ) could be delayed by other threads acquiring the
lock l. By introducing the explicit delay mechanism, the abstract
specification can model the deadlock-freedom property. In our
previous example, if we replace INC with wrl(INC), the second
program may fail to terminate too, even under fair scheduling.

Before showing our abstraction theorem, we first define contex-
tual refinement below.

Definition 3 (Contextual Refinement under Fair Scheduling).
Π vP Π′ iff ∀n,C1, . . . , Cn, σc, σo,Σo. ((σo,Σo) |= P)

=⇒ OfωJ(W, (σc, σo))K ⊆ OfωJ(W ′, (σc,Σo)K ;

where W = let Π in C1‖ . . .‖Cn and W ′ = let Π′ in C1‖ . . .‖Cn.

Here OfωJW,SK generates the full traces of externally observ-
able events in fair executions starting from (W,S). In our language
in Sec. 3, only outputs (produced by print commands) and fault
events are externally observable. Note thatOfωJW,SK contains only
full execution traces (which could be infinite for non-terminating
executions), therefore v is a termination-preserving refinement.

As an important and novel result, we show the following ab-
straction theorem, saying that our logic LiLi ensures the contextual
refinements v.

Theorem 4 (Progress-Aware Abstraction).
Suppose l 6∈ fv(Π,Γ, P,D, R,G). If D, R,G ` {P}Π : Γ, then

(1) Π vwrl(P) wrl(Γ) holds; and
(2) if R⇒ bRc0 and G⇒ bGc0, then Π vP Γ holds.

where wrl(P) extends the precondition P with the lock variable l,
i.e., wrl(P)

def
= (P ∗ (l 7→ 0)).

The contextual refinements v provide abstractions for concur-
rent objects under fair scheduling, which can be applied for modular
verification of client code. When proving liveness properties of a
client of an object under fair scheduling, we can soundly replace the
concrete object implementation Π by some more abstract code. For
starvation-free objects (case (2) in the theorem), the substitute is Γ,
the atomic abstract operations. For deadlock-free objects (case (1)
in the theorem), the substitute is wrl(Γ), where the atomic abstract
operations Γ are wrapped with auxiliary code for synchronization.
In this paper we do not discuss the verification of clients.

More details about proofs. Due to splace limit, we omit defini-
tions of some key concepts, e.g., linearizability, deadlock-freedom
and starvation-freedom. They are mostly standard and are presented
in the TR [22]. The proofs of Theorems 2 and 4 are shown in detail
in the TR too. Here we only give a brief overview about the structure
of the proofs.

396

non-delay delay
non-blocking wait-freedom ⇒ lock-freedom

⇓ ⇓
blocking starvation-freedom ⇒ deadlock-freedom

Figure 16. Progress properties of concurrent objects.

To prove Theorem 4, we introduce a termination-preserving
simulation, which extends previous work [24] to reason about
blocking and delay. LiLi ensures that the concrete implementation
Π is simulated by the abstract specification (Γ for starvation-free
objects and wrl(Γ) for deadlock-free ones). Then we prove the
simulation ensures the contextual refinement v.

We also establish the equivalence between the contextual re-
finements and the combination of linearizability and deadlock-
freedom/starvation-freedom, as in Liang et al.’s previous work [23].
Then Theorem 2 follows from these equivalence results and Theo-
rem 4.

6. On Lock-Freedom and Wait-Freedom
As a program logic for concurrent objects under fair scheduling,
LiLi unifies the verification of linearizability, starvation-freedom
and deadlock-freedom. It has been applied to verify objects with
blocking synchronization (i.e., mutual exclusion locks).

LiLi can also be applied to verify non-blocking objects. For non-
blocking objects, wait-freedom and lock-freedom are two commonly
accepted progress criteria, which require method-wise progress and
whole-system progress respectively. Then, under fair scheduling,
wait-freedom and lock-freedom are degraded to starvation-freedom
and deadlock-freedom, respectively.

Fig. 16 shows the relationships among all the four progress
properties (where “⇒” represents implications). We sort them in two
dimensions: blocking and delay (their difference has been explained
in Sec. 2.2.1). Starvation-free or deadlock-free objects allow a thread
to be blocked, and lock-free and deadlock-free objects permit delay.

Our logic LiLi handles blocking by definite actions, and supports
delay by �-tokens and multi-level actions. By ignoring either or
both features, it can be instantiated to verify objects with any of the
four progress properties in Fig. 16.

To verify lock-free objects, we instantiate the definite actions
D to be false ; true, and use only the supports for delay. Then a
thread cannot rely on the environment threads’ D, meaning that it is
never blocked. The WHL rule in Fig. 7 is reduced to requiring that
the loop terminates (the ♦-tokens decrease at each iteration) unless
being delayed by the environment. The definite progress condition
J ⇒ (R,G : D f−→Q) could trivially hold by setting both Q and J
to be true and f to be a constant function.

To verify wait-free objects, besides instantiating D as false ;

true, we also requireR andG to specify actions of level 0 only, as in
Theorem 2(2). The instantiation results in the logic rules disallowing
both blocking and delay, so we know every method would terminate
regardless of the environment interference.

In fact, Liang et al.’s program logic rules [24] for lock-free
algorithms can be viewed as a specialization of LiLi. Thus all the
examples verified in their work can also be verified in LiLi.

7. More Examples
We have seen a few small examples showing the use of LiLi. Below
we give an overview of other blocking algorithms we have verified.
Their proofs are in TR [22].

• Coarse-grained synchronization. The easiest way to implement
a concurrent object is using a single lock to protect all the object
data. Our logic can be applied to such an object. As an example,

we verified the counter with various lock implementations [13,
25], including ticket locks, Anderson array-based queue locks,
CLH list-based queue locks, MCS list-based queue locks, and
TAS locks. We show that the coarse-grained object with ticket
locks or queue locks is starvation-free, and it is deadlock-free
with TAS locks.

• Fine-grained and optimistic synchronization. As examples with
more permissive locking scheme, we verified Michael-Scott two-
lock queues [26], lock-coupling lists [13], optimistic lists [13],
and lazy lists [11]. We show that the two-lock queues and
the lock-coupling lists are starvation-free if all their locks are
implemented using ticket locks, and they are deadlock-free if
their locks are TAS locks. The optimistic lists and the lazy lists
have rollback mechanisms, and we prove they are deadlock-free.

To the best of our knowledge, we are the first to formally verify
the starvation-freedom of lock-coupling lists and the deadlock-
freedom of optimistic lists and lazy lists.

Optimistic lists. Below we verify the optimistic list-based imple-
mentation in Fig. 2(a) of a mutable set data structure. The algorithm
has operations add, which adds an element to the set, and rmv,
which removes an element from the set. Fig. 17 shows the code and
the proof outline for rmv.

We have informally explained the idea of the algorithm in
Sec. 2.3.4. To verify its progress in LiLi, we need to recognize
the delaying actions, specify them in rely and guarantee conditions
with appropriate levels, define the definite actions, and finally prove
the termination of loops following the WHL rule.

Following the earlier linearizability proofs in RGSep [31], the
basic actions of a thread include the lock acquire (line 4) and release
actions (lines 6 and 12), and the Add and Rmv actions (lines 8-11)
that insert and delete nodes from the list respectively. Since we use
TAS locks here, acquirements of a lock will delay other threads
competing for the same lock. Thus lock acquirements are delaying
actions, as illustrated in Sec. 4.3.2. Also, the Add and Rmv actions
may cause the failure of the validation (at line 5) in other threads.
The failed validation will further cause the threads to roll back and
to acquire the locks again. Therefore the Add and Rmv actions are
also delaying actions that may lead to more lock acquirements. In
our rely and guarantee specifications, the Add and Rmv actions are
level-2 delaying actions, while lock acquirements are at level 1.

Next we define the definite actions D that a blocked thread
may wait for. Since a thread is blocked only if the lock it tries to
acquire is unavailable, we only need to specify in D the various
scenarios under which the lock release would definitely happen. The
definitions are omitted here.

We also need to find a metric f to prove the definite progress
condition in the WHL rule. We define f as the number of all the
locked nodes, including those on the list and those that have been
removed from the list but have not been unlocked yet. It is a
conservative upper bound of the length of the queue of definite
actions that a blocked thread is waiting for. It is easy to check that
every definite action D makes the metric to decrease, and that a
thread is unblocked to acquire the lock when the metric becomes 0.

In Fig. 17, the precondition is given �(1, 2), two level-1 �-
tokens for locking two adjacent nodes, and one level-2 �-token for
doing Rmv . We apply the (HIDE-♦) rule and assign one ♦-token to
the loop at lines 2-7, so the loop should terminate in one round if it
is not delayed by the environment.

A round of loop is started at the cost of the ♦-token. The code
find at line 3 traverses the list. After line 3, p and c may be
valid: both of them are on the list and p.next is c. However, if
the environment updates the list by the level-2 delaying actions Add
or Rmv , the two nodes p and c may no longer satisfy valid. In this
case, invalid(p, c) holds, and the current thread could gain two more

397

rmv(int e) {{
�(1, 2) ∧ arem(RMV(e)) ∧ . . .

}
1 local b := false, p, c, n;{

¬b ∧ �(1, 2) ∧ ♦ ∧ . . . ∨ b ∧ . . .
}

2 while (!b) {{
�(1, 2) ∧ . . .

}
3 (p, c) := find(e); // a loop of list traversal{

valid(p, c) ∧ �(1, 2) ∧ . . . ∨ invalid(p, c) ∧ �(1, 4) ∧ ♦ ∧ . . .
}

4 lock p; lock c;{
valid(p, c) ∧ �(1, 0) ∧ . . . ∨ invalid(p, c) ∧ �(1, 2) ∧ ♦ ∧ . . .

}
5 b := validate(p, c); // a loop of list traversal
6 if (!b) { unlock c; unlock p; }{

b ∧ valid(p, c) ∧ �(1, 0) ∧ . . . ∨ ¬b ∧ �(1, 2) ∧ ♦ ∧ . . .
}

7 }{
valid(p, c) ∧ �(1, 0) ∧ arem(RMV(e)) ∧ . . .

}
8 if (c.data = e) {
9 n := c.next;{

valid(p, c, e, n) ∧ �(1, 0) ∧ arem(RMV(e)) ∧ . . .
}

10 < p.next := n; gn := gn ∪ {c} >; // LP{
valid(p, n) ∧ arem(skip) ∧ . . .

}
11 }
12 unlock c; unlock p;{

arem(skip) ∧ . . .
}

}

Figure 17. Proofs for optimistic lists (with auxiliary code in gray).

level-1 �-tokens and one more ♦-token, allowing it to roll back and
re-lock the nodes in a new round.

At line 4, lock p and lock c consume two level-1 �-tokens
respectively. The validation at line 5 succeeds in a valid state, and
fails in an invalid state. Thus we can re-establish the loop invariant
after line 6.

Lines 8-11 perform the node removal. Line 10 is the lineariza-
tion point (LP in the figure), at which we fulfill the abstract atomic
operation RMV(e). Afterwards, the remaining abstract code becomes
skip. To help specify the shared state, in line 10 we introduce an
auxiliary variable gn to collect the locations of removed nodes.

Due to space limit, here we only give a brief overview of the
proofs and omit many details, including the specifications of rely
and guarantee conditions, definite actions, and the proofs of the
implementation of find (line 3), validate (line 5) and lock
(line 4). The full specifications and proofs are given in our TR [22].

8. Related Work and Conclusion
Using rely-guarantee style logics to verify liveness properties can
date back to work by Stark [28], Stølen [29], Abadi and Lamport [1]
and Xu et al. [33]. Among them the most closely related work is
the fair termination rule for while loops proposed by Stølen [29],
based on an idea of wait conditions. His rule requires each iteration
to descend if the wait condition Pw holds once in the round. Pw is
comparable to ¬Q in our WHL rule in Fig. 7. But it is difficult to
specify Pw which is part of the global interface of a thread, while our
Q can be constructed on-the-fly for each loop. Also it is difficult to
construct the well-founded order when ¬Pw is not stable (e.g., as in
the TAS lock). We address the problem with the token transfer idea.
Besides, his rule does not support starvation-freedom verification.

Gotsman et al. [10] propose a rely-guarantee-style logic to verify
non-blocking algorithms. They allow R and G to specify certain
types of liveness properties in temporal logic assertions, and do
layered proofs iteratively in multiple rounds to break circular rea-
soning. Afterwards Hoffmann et al. [16] propose the token-transfer
idea to handle delays in lock-free algorithms. Their approach can
be viewed as giving relatively lightweight guidelines (without the
need of multi-round reasoning) to discharge the temporal obligations
for lock-freedom verification. Liang et al. [24] then apply similar

ideas in refinement verification. Their logic can verify linearizability
and lock-freedom together. In LiLi, the use of stratified �-tokens
generalizes their token-transfer approaches to support delays and
rollbacks for deadlock-free objects. Also we propose the new idea
of definite actions as a specific guideline to support blocking for
progress verification under fair scheduling.

Recently, da Rocha Pinto et al. [5] take a different approach to
handle delay. They verify total correctness of non-blocking programs
by explicitly specifying the number of delaying actions that the
environment can do. As we explained, blocking and delay are two
different kinds of interference causing non-termination, both of
which are now handled in LiLi.

Jacobs et al. [17] also design logic rules for total correctness.
They prevent deadlock by global wait orders (proposed by Leino et
al. [20] to prove safety properties), where they need a global function
mapping locks to levels. It is unclear if their rules can be applied
to algorithms with dynamic locking and rollbacks, such as the list
algorithms verified with LiLi. Besides, the idea of wait orders relies
on built-in locks, which is ill-suited for object verification since it is
often difficult to identify a particular field in the object as a lock.

Boström and Müller [3] extend the approach of global wait
orders to verify finite blocking in non-terminating programs. They
propose a notion of obligations which are like our definite actions
D. But they still do not support starvation-freedom verification.
Here we propose the definite progress condition to also ensure the
termination of a thread if it is unblocked infinitely often.

Filipović et al. [8] first show the equivalence between lineariz-
ability and a contextual refinement. Gotsman and Yang [9] suggest
a connection between lock-freedom and a termination-sensitive con-
textual refinement. Afterwards Liang et al. [23] formulate several
contextual refinements, each of which can characterize a liveness
property of linearizable objects. However, their contextual refine-
ments for blocking properties assume fair scheduling at the concrete
level only, which lack transitivity. In this paper, we unify deadlock-
freedom and starvation-freedom with the contextual refinement v
(see Def. 3) which gives us the novel Abstraction Theorem (Thm. 4)
to support modular reasoning about client code.

Back and Xu [2] and Henzinger et al. [12] propose simulations
to verify refinement under fair scheduling. Their simulations are not
thread-local, and there is no program logic given.

There is also plenty of work for liveness verification based on
temporal logics and model checking. Temporal reasoning allows
one to verify progress properties in a unified and general way, but it
provides less guidance on how to discharge the proof obligations.
Our logic rules are based on program structures and enforce specific
patterns (e.g., definite actions and tokens) to guide liveness proofs.

Conclusion and future work. We propose LiLi to verify lineariz-
ability and starvation-freedom/deadlock-freedom of concurrent ob-
jects. It is the first program logic that supports progress verification
of blocking algorithms. We have applied it to verify several non-
trivial algorithms, including lock-coupling lists, optimistic lists and
lazy lists. In the future, we would like to further test its applicability
with more examples, such as tree algorithms which perform rota-
tion by fine-grained locking. We also hope to mechanize LiLi and
develop tools to automate the verification process.

Acknowledgments
We would like to thank Zhong Shao and anonymous referees for
their suggestions and comments on earlier versions of this paper.
This work is supported in part by grants from National Natural
Science Foundation of China (NSFC) under Grant Nos. 61229201,
61379039, 91318301 and 61502442.

398

References
[1] M. Abadi and L. Lamport. Conjoining specifications. ACM Trans.

Program. Lang. Syst., 17(3):507–535, 1995.
[2] R. Back and Q. Xu. Refinement of fair action systems. Acta Inf., 35

(2):131–165, 1998.
[3] P. Boström and P. Müller. Modular verification of finite blocking in

non-terminating programs. In ECOOP, pages 639–663, 2015.
[4] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe

programming: Preventing data races and deadlocks. In OOPSLA, pages
211–230, 2002.

[5] P. da Rocha Pinto, T. Dinsdale-Young, P. Gardner, and J. Sutherland.
Modular termination verification for non-blocking concurrency, 2015.
Manuscript.

[6] J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanically verified
proof obligations for linearizability. ACM Trans. Program. Lang. Syst.,
33(1):4:1–4:43, 2011.

[7] X. Feng. Local rely-guarantee reasoning. In POPL, pages 315–327,
2009.

[8] I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for
concurrent objects. Theor. Comput. Sci., 411(51-52):4379–4398, 2010.

[9] A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction.
In ICALP, pages 453–465, 2011.

[10] A. Gotsman, B. Cook, M. J. Parkinson, and V. Vafeiadis. Proving that
non-blocking algorithms don’t block. In POPL, pages 16–28, 2009.

[11] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer III, and
N. Shavit. A lazy concurrent list-based set algorithm. In OPODIS,
pages 3–16, 2005.

[12] T. A. Henzinger, O. Kupferman, and S. K. Rajamani. Fair simulation.
Inf. Comput., 173(1):64–81, 2002.

[13] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[14] M. Herlihy and N. Shavit. On the nature of progress. In OPODIS,
pages 313–328, 2011.

[15] M. Herlihy and J. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492,
1990.

[16] J. Hoffmann, M. Marmar, and Z. Shao. Quantitative reasoning for
proving lock-freedom. In LICS, pages 124–133, 2013.

[17] B. Jacobs, D. Bosnacki, and R. Kuiper. Modular termination verifica-
tion. In ECOOP, pages 664–688, 2015.

[18] C. B. Jones. Tentative steps toward a development method for
interfering programs. ACM Trans. Program. Lang. Syst., 5(4):596–
619, 1983.

[19] K. R. M. Leino and P. Müller. A basis for verifying multi-threaded
programs. In ESOP, pages 378–393, 2009.

[20] K. R. M. Leino, P. Müller, and J. Smans. Deadlock-free channels and
locks. In ESOP, pages 407–426, 2010.

[21] H. Liang and X. Feng. Modular verification of linearizability with
non-fixed linearization points. In PLDI, pages 459–470, 2013.

[22] H. Liang and X. Feng. A program logic for concurrent objects under fair
scheduling (technical report), 2015. http://kyhcs.ustcsz.edu.
cn/relconcur/lili.

[23] H. Liang, J. Hoffmann, X. Feng, and Z. Shao. Characterizing progress
properties of concurrent objects via contextual refinements. In CON-
CUR, pages 227–241, 2013.

[24] H. Liang, X. Feng, and Z. Shao. Compositional verification of
termination-preserving refinement of concurrent programs. In CSL-
LICS, pages 65:1–65:10, 2014.

[25] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM Trans.
Comput. Syst., 9(1):21–65, 1991.

[26] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In PODC, pages
267–275, 1996.

[27] M. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in
Hoare logics. In LICS, pages 137–146, 2006.

[28] E. W. Stark. A proof technique for rely/guarantee properties. In
FSTTCS, pages 369–391, 1985.

[29] K. Stølen. Shared-state design modulo weak and strong process fairness.
In FORTE, pages 479–498, 1992.

[30] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and Hoare-
style reasoning in a logic for higher-order concurrency. In ICFP, pages
377–390, 2013.

[31] V. Vafeiadis. Modular fine-grained concurrency verification, 2008.
PhD Thesis.

[32] A. Williams, W. Thies, and M. D. Ernst. Static deadlock detection for
java libraries. In ECOOP, pages 602–629, 2005.

[33] Q. Xu, W. P. de Roever, and J. He. The rely-guarantee method for
verifying shared variable concurrent programs. Formal Asp. Comput.,
9(2):149–174, 1997.

399

