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Abstract
Verifying program transformations usually requires proving that
the resulting program (the target) refines or is equivalent to the
original one (the source). However, the refinement relation between
individual sequential threads cannot be preserved in general with
the presence of parallel compositions, due to instruction reordering
and the different granularities of atomic operations at the source
and the target. On the other hand, the refinement relation defined
based on fully abstract semantics of concurrent programs assumes
arbitrary parallel environments, which is too strong and cannot be
satisfied by many well-known transformations.

In this paper, we propose a Rely-Guarantee-based Simulation
(RGSim) to verify concurrent program transformations. The rela-
tion is parametrized with constraints of the environments that the
source and the target programs may compose with. It considers the
interference between threads and their environments, thus is less
permissive than relations over sequential programs. It is composi-
tional w.r.t. parallel compositions as long as the constraints are sat-
isfied. Also, RGSim does not require semantics preservation under
all environments, and can incorporate the assumptions about en-
vironments made by specific program transformations in the form
of rely/guarantee conditions. We use RGSim to reason about opti-
mizations and prove atomicity of concurrent objects. We also pro-
pose a general garbage collector verification framework based on
RGSim, and verify the Boehm et al. concurrent mark-sweep GC.

1. Introduction
Many verification problems can be reduced to verifying program
transformations, i.e., proving the target program of the transforma-
tion has no more observable behaviors than the source. Below we
give some typical examples in concurrent settings:

• Correctness of compilation and optimizations of concurrent
programs. In this most natural program transformation verifica-
tion problem, every compilation phase does a program transfor-
mation T, which needs to preserve the semantics of the inputs.

• Atomicity of concurrent objects. A concurrent object or library
provides a set of methods that allow clients to manipulate the
shared data structure with abstract atomic behaviors [15]. Their
correctness can be reduced to the correctness of the transforma-
tion from abstract atomic operations to concrete and executable
programs in a concurrent context.

• Verifying implementations of software transactional memory
(STM). Many languages supporting STM provide a high-level
atomic block atomic{C}, so that programmers can assume the
atomicity of the execution of C. Atomic blocks are imple-
mented using some STM protocol (e.g., TL2 [11]) that allows
very fine-grained interleavings. Verifying that the fine-grained

program respects the semantics of atomic blocks gives us the
correctness of the STM implementation.

• Correctness of concurrent garbage collectors (GCs). High-
level garbage-collected languages (e.g., Java) allow program-
mers to work at an abstract level without knowledge of the un-
derlying GC algorithm. However, the concrete and executable
low-level program involves interactions between the mutators
and the collector. If we view the GC implementation as a trans-
formation from high-level mutators to low-level ones with a
concrete GC thread, the GC safety can be reduced naturally to
the semantics preservation of the transformation.

To verify the correctness of a program transformation T, we
follow Leroy’s approach [19] and define a refinement relation �
between the target and the source programs, which says the target
has no more observable behaviors than the source. Then we can
formalize the correctness of the transformation as follows:

Correct(T) � ∀C,C. C = T(C) =⇒ C � C . (1.1)

That is, for any source program C acceptable by T, T(C) is
a refinement of C. When the source and the target are shared-
state concurrent programs, the refinement � needs to satisfy the
following requirements to support effective proof of Correct(T):
• Since the target T(C) may be in a different language from the

source, the refinement should be general and independent of the
language details.

• To verify fine-grained implementations of abstract operations,
the refinement should support different views of program states
and different granularities of state accesses at the source and the
target levels.

• When T is syntax-directed (and it is usually the case for par-
allel compositions, i.e., T(C ‖C

′) = T(C) ‖T(C′)), a com-
positional refinement is of particular importance for modular
verification of T.

However, existing refinement (or equivalence) relations cannot sat-
isfy all these requirements at the same time. Contextual equiva-
lence, the canonical notion for comparing program behaviors, fails
to handle different languages since the contexts of the source and
the target will be different. Simulations and logical relations have
been used to verify compilation [4, 16, 19, 21], but they are usu-
ally designed for sequential programs (except [21, 25], which we
will discuss in Section 8). Since the refinement or equivalence re-
lation between sequential threads cannot be preserved in general
with parallel compositions, we cannot simply adapt existing work
on sequential programs to verify transformations of concurrent pro-
grams. Refinement relations based on fully abstract semantics of
concurrent programs are compositional, but they assume arbitrary
program contexts, which is too strong for many practical transfor-
mations. We will explain the challenges in detail in Section 2.
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In this paper, we propose a Rely-Guarantee-based Simulation
(RGSim) for compositional verification of concurrent transforma-
tions. By addressing the above problems, we make the following
contributions:

• RGSim parametrizes the simulation between concurrent pro-
grams with rely/guarantee conditions [17], which specify the
interactions between the programs and their environments.
This makes the corresponding refinement relation composi-
tional w.r.t. parallel compositions, allowing us to decompose
refinement proofs for multi-threaded programs into proofs for
individual threads. On the other hand, the rely/guarantee con-
ditions can incorporate the assumptions about environments
made by specific program transformations, so RGSim can be
applied to verify many practical transformations.

• Based on the simulation technique, RGSim focuses on com-
paring externally observable behaviors (e.g., I/O events) only,
which gives us considerable leeway in the implementations of
related programs. The relation is mostly independent of the lan-
guage details. It can be used to relate programs in different
languages with different views of program states and different
granularities of atomic state accesses.

• RGSim makes relational reasoning about optimizations possi-
ble in parallel contexts. We present a set of relational reason-
ing rules to characterize and justify common optimizations in a
concurrent setting, including hoisting loop invariants, strength
reduction and induction variable elimination, dead code elimi-
nation, redundancy introduction, etc..

• RGSim gives us a refinement-based proof method to verify
fine-grained implementations of abstract algorithms and con-
current objects. We successfully apply RGSim to verify con-
current counters, the concurrent GCD algorithm, Treiber’s non-
blocking stack and the lock-coupling list.

• We reduce the problem of verifying concurrent garbage collec-
tors to verifying transformations, and present a general GC ver-
ification framework, which combines unary Rely-Guarantee-
based verification [17] with relational proofs based on RGSim.

• We verify the Boehm et al. concurrent garbage collection algo-
rithm [7] using our framework. As far as we know, it is the first
time to formally prove the correctness of this algorithm.

In the rest of this paper, we first analyze the challenges for com-
positional verification of concurrent program transformations, and
explain our approach informally in Section 2. Then we give the ba-
sic technical settings in Section 3 and present the formal definition
of RGSim in Section 4. We show the use of RGSim to reason about
optimizations in Section 5, verify atomicity of concurrent objects
in Section 6, and prove the correctness of concurrent GCs in Sec-
tion 7. Finally we discuss related work and conclude in Section 8.

2. Challenges and Our Approach
The major challenge we face is to have a compositional refinement
relation � between concurrent programs, i.e., we should be able to
know T(C1)‖T(C2) � C1 ‖C2 if we have T(C1) � C1 and
T(C2) � C2.

2.1 Sequential Refinement Loses Parallel Compositionality

Observable behaviors of sequential imperative programs usually re-
fer to their control effects (e.g., termination and exceptions) and
final program states. However, refinement relations defined cor-
respondingly cannot be preserved after parallel compositions. It
has been a well-known fact in the compiler community that sound
optimizations for sequential programs may change the behaviors

local r1;
x := 1;
r1 := y;
if (r1 = 0) then

critical region

‖

local r2;
y := 1;
r2 := x;
if (r2 = 0) then

critical region

(a) Dekker’s Mutual Exclusion Algorithm

x := x+1; ‖ x := x+1;

vs.

local r1;
r1 := x;
x := r1 + 1;

‖
local r2;
r2 := x;
x := r2 + 1;

(b) Different Granularities of Atomic Operations

Figure 1. Equivalence Lost after Parallel Composition

of multi-threaded programs [5]. The Dekker’s algorithm shown in
Figure 1(a) has been widely used to demonstrate the problem. Re-
ordering the first two statements of the thread on the left preserves
its sequential behaviors, but the whole program can no longer en-
sure exclusive access to the critical region.

In addition to instruction reordering, the different granularities
of atomic operations between the source and the target programs
can also break the compositionality of program equivalence in a
concurrent setting. In Figure 1(b), the target program at the bottom
behaves differently from the source at the top (assuming each
statement is executed atomically), although the individual threads
at the target and the source have the same behaviors.

2.2 Assuming Arbitrary Environments is Too Strong

The problem with the refinement for sequential programs is that it
does not consider the effects of threads’ intermediate state accesses
on their parallel environments. People have given fully abstract se-
mantics to concurrent programs (e.g., [1, 8]). The semantics of a
program is modeled as a set of execution traces. Each trace is an
interleaving of state transitions made by the program itself and ar-
bitrary transitions made by the environment. Then the refinement
between programs can be defined as the subset relation between
the corresponding trace sets. Since it considers all possible envi-
ronments, the refinement relation has very nice compositionality,
but unfortunately is too strong to formulate the correctness of many
well-known transformations, including the four classes of transfor-
mations mentioned before:

• Many concurrent languages (e.g., C++ [6]) do not give seman-
tics to programs with data races (like the examples shown in
Figure 1). Therefore the compilers only need to guarantee the
semantics preservation of data-race-free programs.

• When we prove that a fine-grained implementation of a concur-
rent object is a refinement of an abstract atomic operation, we
can assume that all accesses to the object in the context of the
target program use the same set of primitives.

• Usually the implementation of STM (e.g., TL2 [11]) ensures
the atomicity of a transaction atomic{C} only when there are
no data races. Therefore, the correctness of the transformation
from high-level atomic blocks to fine-grained concurrent code
assumes data-race-freedom in the source.

• Many garbage-collected languages are type-safe and prohibit
operations such as pointer arithmetics. Therefore the garbage
collector could make corresponding assumptions about the mu-
tators that run in parallel.
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In all these cases, the transformations of individual threads are
allowed to make various assumptions about the environments. They
do not have to ensure semantics preservation within all contexts.

2.3 Languages at Source and Target May Be Different

The use of different languages at the source and the target levels
makes the formulation of the transformation correctness more dif-
ficult. If the source and the target languages have different views of
program states and different atomic primitives, we cannot directly
compare the state transitions made by the source and the target pro-
grams. This is another reason that makes the aforementioned subset
relation between sets of program traces in fully abstract semantics
infeasible. For the same reason, many existing techniques for prov-
ing refinement or equivalence of programs in the same language
cannot be applied either.

2.4 Different Observers Make Different Observations

Concurrency introduces tensions between two kinds of observers:
human beings (as external observers) and the parallel program con-
texts. External observers do not care about the implementation de-
tails of the source and the target programs. For them, intermediate
state accesses (such as memory reads and writes) are silent steps
(unobservable), and only external events (such as I/O operations)
are observable. On the other hand, state accesses have effects on
the parallel program contexts, and are not silent to them.

If the refinement relation relates externally observable event
traces only, it cannot have parallel compositionality, as we ex-
plained in Section 2.1. On the other hand, relating all state ac-
cesses of programs is too strong. Any reordering of state accesses
or change of atomicity would fail the refinement.

2.5 Our Approach

In this paper we propose a Rely-Guarantee-based Simulation
(RGSim) � between the target and the source programs. It es-
tablishes a weak simulation, ensuring that for every externally ob-
servable event made by the target program there is a corresponding
one in the source. We choose to view intermediate state accesses
as silent steps, thus we can relate programs with different imple-
mentation details. This also makes our simulation independent of
language details.

To support parallel compositionality, our relation takes into
account explicitly the expected interference between threads and
their parallel environments. Inspired by the Rely-Guarantee (R-
G) verification method [17], we specify the interference using
rely/guarantee conditions. In Rely-Guarantee reasoning, the rely
condition R of a thread specifies the permitted state transitions that
its environment may have, and its guarantee G specifies the possi-
ble transitions made by the thread itself. To ensure parallel threads
can collaborate, we need to check the interference constraint, i.e.,
the guarantee of each thread is permitted in the rely of every others.
Then we can verify their parallel composition by separately veri-
fying each thread, showing its behaviors under the rely condition
indeed satisfy its guarantee. After parallel composition, the threads
should be executed under their common environment (i.e., the in-
tersection of their relies) and guarantee all the possible transitions
made by them (i.e., the union of their guarantees).

Parametrized with rely/guarantee conditions for the two levels,
our relation (C,R,G) � (C,R,G) talks about not only the target
C and the source C, but also the interference R and G between C
and its target-level environment, and R and G between C and its en-
vironment at the source level. Informally, (C,R,G) � (C,R,G)
says the executions of C under the environment R do not exhibit
more observable behaviors than the executions of C under the en-
vironment R, and the state transitions of C and C satisfy G and G

(Events) e ::= . . . (Labels) o ::= e | τ

(a) Events and Transition Labels

(LState) σ ::= . . .

(LExpr) E ∈ LState → Int⊥
(LBExp) B ∈ LState → {true, false}⊥
(LInstr) c ∈ LState ⇀ P((Labels × LState) ∪ {abort})
(LStmt) C ::= skip | c | C1;C2 | if (B) C1 else C2

| while (B) C | C1‖C2

(LStep) −→L ∈ P((LStmt/{skip} × LState)× Labels
×((LStmt × LState) ∪ {abort}))

(b) The Low-Level Language

(HState) Σ ::= . . .

(HExpr) E ∈ HState → Int⊥
(HBExp) B ∈ HState → {true, false}⊥
(HInstr) c ∈ HState ⇀ P((Labels × HState) ∪ {abort})
(HStmt) C ::= skip | c | C1; ;C2 | if B then C1 else C2

| while B do C | C1�C2

(HStep) −→L ∈ P((HStmt/{skip} × HState)× Labels
×((HStmt × HState) ∪ {abort}))

(c) The High-Level Language

Figure 2. Generic Languages at Target and Source Levels

respectively. RGSim is now compositional, as long as the threads
are composed with well-behaved environments only. The paral-
lel compositionality lemma is in the following form. If we know
(C1,R1,G1) � (C1,R1,G1) and (C2,R2,G2) � (C2,R2,G2),
and also the interference constraints are satisfied, i.e., G2 ⊆ R1,
G1 ⊆ R2, G2 ⊆ R1 and G1 ⊆ R2, we could get

(C1‖C2,R1 ∩R2,G1 ∪ G2) � (C1‖C2,R1 ∩ R2,G1 ∪G2) .

The compositionality of RGSim gives us a proof theory for concur-
rent program transformations.

Also different from fully abstract semantics for threads, which
assumes arbitrary behaviors of environments, RGSim allows us to
instantiate the interference R, G, R and G differently for different
assumptions about environments, therefore it can be used to verify
the aforementioned four classes of transformations. For instance, if
we want to prove that a transformation preserves the behaviors of
data-race-free programs, we can specify the data-race-freedom in
R and G. Then we are no longer concerned with the examples in
Figure 1, both of which have data races.

3. Basic Technical Settings
In this section, we present the source and the target programming
languages. Then we define a basic refinement �, which naturally
says the target has no more externally observable event traces than
the source. We use � as an intuitive formulation of the correctness
of transformations.

3.1 The Languages

Following standard simulation techniques, we model the seman-
tics of target and source programs as labeled transition systems.
Before showing the languages, we first define events and labels in
Figure 2(a). We leave the set of events unspecified here. It can be
instantiated by program verifiers, depending on their interest (e.g.,
input/output events). A label that will be associated with a state
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transition is either an event or τ , which means the corresponding
transition does not generate any event (i.e., a silent step).

The target language, which we also call the low-level language,
is shown in Figure 2(b). We abstract away the forms of states, ex-
pressions and primitive instructions in the language. An arithmetic
expression E is modeled as a function from states to integers lifted
with an undefined value ⊥. Boolean expressions are modeled sim-
ilarly. An instruction is a partial function from states to sets of la-
bel and state pairs, describing the state transitions and the events it
generates. We use P( ) to denote the power set. Unsafe executions
lead to abort. Note that the semantics of an instruction could be
non-deterministic. Moreover, it might be undefined on some states,
making it possible to model blocking operations such as acquiring
a lock.

Statements are either primitive instructions or compositions of
them. skip is a special statement used as a flag to show the end of
executions. A single-step execution of statements is modeled as a
labeled transition −→L , which is a triple of an initial program
configuration (a pair of statement and state), a label and a resulting
configuration. It is undefined when the initial statement is skip. The
step aborts if an unsafe instruction is executed.

The high-level language (source language) is defined similarly
in Figure 2(c), but it is important to note that its states and primitive
instructions may be different from those in the low-level language.
The compound statements are almost the same as their low-level
counterparts. C1; ;C2 and C1�C2 are sequential and parallel com-
positions of C1 and C2 respectively. Note that we choose to use the
same set of compound statements in the two languages for simplic-
ity only. This is not required by our simulation relation, although
the analogous program constructs of the two languages (e.g., paral-
lel compositions C1‖C2 and C1�C2) make it convenient for us to
discuss the compositionality later.

Figure 3 shows part of the definition of −→H , which gives
the high-level operational semantics of statements. We often omit
the subscript H (or L) in −→H (or −→L ) and the label on
top of the arrow when it is τ . The semantics is mostly standard.
Note that when a primitive instruction c is blocked at state Σ (i.e.,
Σ �∈ dom(c)), we let the program configuration reduce to itself. For
example, the instruction lock(l) would be blocked when l is not
0, making it be repeated until l becomes 0; whereas unlock(l)
simply sets l to 0 at any time and would never be blocked. Primitive
instructions in the high-level and low-level languages are atomic
in the interleaving semantics. Below we use −→ ∗ for zero or
multiple-step transitions with no events generated, and e−→∗ for
multiple-step transitions with only one event e generated.

3.2 The Event Trace Refinement
Now we can formally define the refinement relation � that relates
the set of externally observable event traces generated by the target
and the source programs. A trace is a sequence of events e, and may
end with a termination marker done or a fault marker abort.

(EvtTrace) E ::= ε | done | abort | e ::E
Definition 1 (Event Trace Set). ETrSetn(C, σ) represents a set of
external event traces produced by C in n steps from the state σ:

• ETrSet0(C, σ) � {ε} ;

• ETrSetn+1(C, σ) �
{E | (C, σ) −→ (C′, σ′) ∧ E ∈ETrSetn(C′, σ′)
∨ (C, σ)

e−→ (C′, σ′) ∧ E ′∈ETrSetn(C′, σ′) ∧ E=e ::E ′
∨ (C, σ) −→ abort ∧ E=abort
∨ C=skip ∧ E=done} .

We define ETrSet(C, σ) as
⋃

n ETrSetn(C, σ).

σ

σ′

Σ

Σ′

α

�
R

α �
R

σ

σ′

θ

θ′

Σ

Σ′

α β

�
R

�
RM

�
R

∗
α β

(a) α-Related Transitions (b) The Side Condition of TRANS

Figure 4. Related Transitions

We overload the notation and use ETrSet(C,Σ) for the high-level
language. Then we define an event trace refinement as the subset
relation between event trace sets, which is similar to Leroy’s re-
finement property [19].

Definition 2 (Event Trace Refinement). We say (C, σ) is an e-
trace refinement of (C,Σ), i.e., (C, σ) � (C,Σ), if and only if

ETrSet(C, σ) ⊆ ETrSet(C,Σ) .

The refinement is defined for program configurations instead of
for code only because the initial states may affect the behaviors
of programs. In this case, the transformation T should translate
states as well as code. We overload the notation and use T(Σ) to
represent the state transformation, and use C �T C for

∀σ,Σ. σ = T(Σ) =⇒ (C, σ) � (C,Σ) ,

then Correct(T) defined in formula (1.1) can be reformulated as

Correct(T) � ∀C,C. C = T(C) =⇒ C �T C . (3.1)

From the above e-trace refinement definition, we can derive an
e-trace equivalence relation as follows:

(C, σ) ≈ (C,Σ) � (C, σ) � (C,Σ) ∧ (C,Σ) � (C, σ) ,

and use C ≈T C for ∀σ,Σ. σ = T(Σ) =⇒ (C, σ) ≈ (C,Σ).

4. The RGSim Relation
The e-trace refinement is defined directly over the externally ob-
servable behaviors of programs. It is intuitive, and also abstract in
that it is independent of language details. However, as we explained
before, it is not compositional w.r.t. parallel compositions. In this
section we propose RGSim, which can be viewed as a composi-
tional proof technique that allows us to derive the simple e-trace
refinement and then verify the corresponding transformation T.

4.1 The Definition

Our co-inductively defined RGSim relation is in the form of
(C, σ,R,G) �α;γ (C,Σ,R,G), which is a simulation between
program configurations (C, σ) and (C,Σ). It is parametrized with
the rely and guarantee conditions at the low level and the high level,
which are binary relations over states:

R,G ∈ P(LState× LState) , R,G ∈ P(HState× HState) .

The simulation also takes two additional parameters: the step in-
variant α and the postcondition γ, which are both relations between
the low-level and the high-level states.

α, γ, ζ ∈ P(LState× HState) .

Before we formally define RGSim in Definition 4, we first
introduce the α-related transitions as follows.

Definition 3 (α-Related Transitions).
〈R,R〉α � {((σ, σ′), (Σ,Σ′)) | (σ, σ′) ∈ R ∧ (Σ,Σ′) ∈ R

∧ (σ,Σ) ∈ α ∧ (σ′,Σ′) ∈ α} .
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(τ,Σ′) ∈ c Σ

(c,Σ) −→ (skip,Σ′)

(e,Σ′) ∈ c Σ

(c,Σ)
e−→ (skip,Σ′)

abort ∈ c Σ

(c,Σ) −→ abort
Σ �∈ dom(c)

(c,Σ) −→ (c,Σ)

B Σ = true
(if B then C1 else C2,Σ) −→ (C1,Σ)

B Σ = false
(if B then C1 else C2,Σ) −→ (C1,Σ)

B Σ =⊥
(if B then C1 else C2,Σ) −→ abort

B Σ = true
(while B do C,Σ) −→ (C;while B do C,Σ)

B Σ = false
(while B do C,Σ) −→ (skip,Σ)

B Σ =⊥
(while B do C,Σ) −→ abort

(C,Σ) −→ (C′,Σ′)
(C; ;C′′,Σ) −→ (C′; ;C′′,Σ′)

(C,Σ)
e−→ (C′,Σ′)

(C; ;C′′,Σ)
e−→ (C′; ;C′′,Σ′) (skip; ;C′,Σ) −→ (C′,Σ)

(C,Σ) −→ abort
(C; ;C′,Σ) −→ abort

(skip�skip,Σ) −→ (skip,Σ)

(C1,Σ) −→ (C′
1,Σ

′)

(C1�C2,Σ) −→ (C′
1�C2,Σ′)

(C2,Σ) −→ (C′
2,Σ

′)

(C1�C2,Σ) −→ (C1�C′
2,Σ

′)

(C1,Σ)
e−→ (C′

1,Σ
′)

(C1�C2,Σ)
e−→ (C′

1�C2,Σ′)

(C2,Σ)
e−→ (C′

2,Σ
′)

(C1�C2,Σ)
e−→ (C1�C′

2,Σ
′)

(C1,Σ) −→ abort or (C2,Σ) −→ abort
(C1�C2,Σ) −→ abort

Figure 3. Operational Semantics of the High-Level Language

(C, σ)

(C′, σ′)

(C,Σ)

(C′,Σ′)

α

�
G
�
e

α

�
�

G

∗
e

(C, σ)

(C, σ′)

(C,Σ)

(C,Σ′)

α

�

�
R

α

�
�

R

∗

(a) Program Steps (b) Environment Steps

Figure 5. Simulation Diagrams of RGSim

〈R,R〉α represents a set of the α-related transitions in R and R,
putting together the corresponding transitions in R and R that can
be related by α, as illustrated in Figure 4(a). 〈G,G〉α is defined in
the same way.

Definition 4 (RGSim). Whenever (C, σ,R,G) �α;γ (C,Σ,R,G),
then (σ,Σ)∈α and the following are true:

1. if (C, σ) −→ (C′, σ′), then there exist C′ and Σ′ such that
(C,Σ) −→∗ (C′,Σ′), ((σ, σ′), (Σ,Σ′)) ∈ 〈G,G∗〉α and
(C′, σ′,R,G) �α;γ (C′,Σ′,R,G);

2. if (C, σ) e−→ (C′, σ′), then there exist C′ and Σ′ such that
(C,Σ)

e−→∗ (C′,Σ′), ((σ, σ′), (Σ,Σ′)) ∈ 〈G,G∗〉α and
(C′, σ′,R,G) �α;γ (C′,Σ′,R,G);

3. if C = skip, then there exists Σ′ such that
(C,Σ) −→∗ (skip,Σ′), ((σ, σ), (Σ,Σ′)) ∈ 〈G,G∗〉α,
(σ,Σ′) ∈ γ and γ ⊆ α;

4. if (C, σ) −→ abort, then (C,Σ) −→∗ abort;

5. if ((σ, σ′), (Σ,Σ′)) ∈ 〈R,R∗〉α, then
(C, σ′,R,G) �α;γ (C,Σ′,R,G).

Then, (C,R,G) �α;ζ�γ (C,R,G) iff
for all σ and Σ, if (σ,Σ) ∈ ζ, then (C, σ,R,G) �α;γ (C,Σ,R,G).
Here the precondition ζ is used to relate the initial states σ and Σ.

Informally, (C, σ,R,G) �α;γ (C,Σ,R,G) says the low-level
configuration (C, σ) is simulated by the high-level configuration
(C,Σ) with behaviors G and G respectively, no matter how their
environments R and R interfere with them. It requires the follow-
ing hold for every execution of C:

• Starting from α-related states, each step of C corresponds to
zero or multiple steps of C, and the resulting states are α-
related too. If an external event is produced in the step of
C, the same event should be produced by C. We show the
simulation diagram with events generated by the program steps
in Figure 5(a), where solid lines denote hypotheses and dashed
lines denote conclusions, following Leroy’s notations [19].

• The α relation reflects the abstractions from the low-level ma-
chine model to the high-level one, and is preserved by the re-
lated transitions at the two levels (so it is an invariant). For
instance, when verifying a fine-grained implementation of sets,
the α relation may relate a concrete representation in memory
(e.g., a linked-list) at the low level to the corresponding abstract
mathematical set at the high level.

• The corresponding transitions of C and C need to be in
〈G,G∗〉α. That is, for each step of C, its state transition should
satisfy the guarantee G, and the corresponding transition made
by the multiple steps of C should be in the transitive closure of
G. The guarantees are abstractions of the programs’ behaviors.
As we will show later in the PAR rule in Figure 7, they will
serve as the rely conditions of the sibling threads at the time of
parallel compositions. Note that we do not need each step of C
to be in G, although we could do so. This is because we only
care about the coarse-grained behaviors (with mumbling) of the
source that are used to simulate the target. We will explain more
by the example (4.1) in Section 4.2.

• If C terminates, then C terminates as well, and the final states
should be related by the postcondition γ. We require γ ⊆ α,
i.e., the final state relation is not weaker than the step invariant.

• C is not safe only if C is not safe either. This means the trans-
formation should not make a safe high-level program unsafe at
the low level.

• Whatever the low-level environment R and the high-level one
R do, as long as the state transitions are α-related, they should
not affect the simulation between C and C, as shown in Fig-
ure 5(b). Here a step in R may correspond to zero or multiple
steps of R. Note that different from the program steps, for the
environment steps we do not require each step of R to corre-
spond to zero or multiple steps of R. On the other hand, only
requiring thatR be simulated by R is not sufficient for parallel
compositionality, which we will explain later in Section 4.2.
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InitRelT(ζ) � ∀σ,Σ. σ = T(Σ) =⇒ (σ,Σ) ∈ ζ

B⇔⇔B � {(σ,Σ) | B σ = B Σ} B∧∧B � {(σ,Σ) | B σ ∧ B Σ}
Intuit(α) � ∀σ,Σ, σ′,Σ′. (σ,Σ)∈α ∧ σ⊆σ′ ∧ Σ⊆Σ′

=⇒ (σ′,Σ′) ∈ α

η # α � (η ∩ α) ⊆ (η � α)

β ◦ α � {(σ,Σ) | ∃θ. (σ, θ) ∈ α ∧ (θ,Σ) ∈ β}
α � β � {(σ1 � σ2,Σ1 � Σ2) | (σ1,Σ1) ∈ α ∧ (σ2,Σ2) ∈ β}
Id � {(σ, σ) | σ ∈ LState} True � {(σ, σ′) | σ, σ′ ∈ LState}
RM isMidOf (α, β;R,R) � ∀σ, σ′,Σ,Σ′.
((σ, σ′), (Σ,Σ′)) ∈ 〈R,R〉β◦α
=⇒ ∀θ. (σ, θ) ∈ α ∧ (θ,Σ) ∈ β
=⇒ ∃θ′. ((σ,σ′), (θ,θ′))∈〈R,RM〉α ∧ ((θ,θ′), (Σ,Σ′))∈〈RM,R〉β

Figure 6. Auxiliary Definitions for RGSim

Then based on the simulation, we hide the states by the precon-
dition ζ and define the RGSim relation between programs only. By
the definition we know ζ ⊆ α if (C,R,G) �α;ζ�γ (C,R,G), i.e.,
the precondition needs to be no weaker than the step invariant.

If two programs are simulated by each other, then they are called
R-G-based similar, as defined below.

(C, σ,R,G) �α;ζ (C,Σ,R,G) �
(C, σ,R,G)�α;γ (C,Σ,R,G) ∧ (C,Σ,R,G)�

α−1;γ−1 (C, σ,R,G)

Here α−1 and γ−1 are the inverse of α and γ respectively. Then,

(C,R,G) �α;ζ�γ (C,R,G) �
∀σ,Σ. (σ,Σ) ∈ ζ =⇒ (C, σ,R,G) �α;γ (C,Σ,R,G)

RGSim is sound w.r.t. the e-trace refinement (Definition 2). That
is, (C, σ,R,G) �α;γ (C,Σ,R,G) ensures that (C, σ) does not
have more observable behaviors than (C,Σ).

Theorem 5 (Soundness). For all C, C, σ and Σ,

1. if there exist R, G, R, G, α and γ such that (C, σ,R,G) �α;γ

(C,Σ,R,G), then (C, σ) � (C,Σ).

2. if there exist R, G, R, G, α and γ such that (C, σ,R,G) �α;γ

(C,Σ,R,G), then (C, σ) ≈ (C,Σ).

The soundness theorem can be proved by first strengthening the
relies to the identity transitions and weakening the guarantees to
the universal relations. Then we prove that the resulting simulation
under identity environments implies the e-trace refinement.

For program transformations, since the initial state for the target
program is transformed from the initial state for the source, we use
InitRelT(ζ) (defined in Figure 6) to say the transformation T over
states ensures the binary precondition ζ.

Corollary 6. If there exist R, G, R, G, α, ζ and γ such that
InitRelT(ζ) and (C,R,G) �α;ζ�γ (C,R,G), then C �T C.

4.2 Compositionality Rules

RGSim is compositional w.r.t. various program constructs, includ-
ing parallel compositions. We present the compositionality rules in
Figure 7, which gives us a relational proof method for concurrent
program transformations.

As in the R-G logic [17], we require that the pre- and post-
conditions be stable under the interference from the environments.
Here we introduce the concept of stability of a relation ζ w.r.t. a set
of transition pairs Λ ∈ P((LState× LState)× (HState×HState)).

Definition 7 (Stability). Sta(ζ,Λ) holds iff
for all σ, σ′, Σ and Σ′,
if (σ,Σ) ∈ ζ and ((σ, σ′), (Σ,Σ′)) ∈ Λ, then (σ′,Σ′) ∈ ζ.

Usually we need Sta(ζ, 〈R,R∗〉α), which says whenever ζ holds
initially and R and R

∗ perform related actions, the resulting states
still satisfy ζ. By unfolding 〈R,R∗〉α, we could see that α itself
is stable w.r.t. any α-related transitions, i.e., Sta(α, 〈R,R∗〉α).
Another simple example is given below, where both environments
could increment x and the unary stable assertion {{x ≥ 0}} is lifted
to the relation ζ:

ζ � {(σ,Σ) | σ(x) = Σ(x) ≥ 0} α � {(σ,Σ) | σ(x) = Σ(x)}
R � {(σ, σ′) | σ′ = σ{x� σ(x) + 1}}
R � {(Σ,Σ′) | Σ′ = Σ{x� Σ(x) + 1}}

We can prove Sta(ζ, 〈R,R∗〉α). Stability of the pre- and post-
conditions under the environments’ interference is assumed to be
an implicit side-condition at every proof rule, e.g., we assume
Sta(ζ, 〈R,R∗〉α) in the SKIP rule. We also require implicitly that
the relies and guarantees are closed over identity transitions, since
stuttering steps will not affect observable event traces.

In Figure 7, the rules SKIP, SEQ, IF and WHILE reveal a high
degree of similarity to the corresponding inference rules in Hoare
logic. In the SEQ rule, γ serves as the postcondition of C1 and C1

and the precondition of C2 and C2 at the same time. The IF rule
requires the boolean conditions of both sides to be evaluated to the
same value under the precondition ζ. We give the definitions of
the sets B⇔⇔ B and B∧∧B in Figure 6. The rule also requires the
precondition ζ to imply the step invariant α. In the WHILE rule, the
γ relation is viewed as a loop invariant preserved at the loop entry
point, which needs to ensure B⇔⇔B.

Parallel compositionality. The PAR rule shows parallel compo-
sitionality of RGSim. The interference constraints say that two
threads can be composed in parallel if one thread’s guarantee im-
plies the rely of the other. After parallel composition, they are ex-
pected to run in the common environment and their guaranteed be-
haviors contain each single thread’s behaviors.

Note that, although RGSim does not require every step of the
high-level program to be in its guarantee (see the first two condi-
tions in Definition 4), this relaxation does not affect the parallel
compositionality. This is because the target could have less behav-
iors than the source. To let C1�C2 simulate C1‖C2, we only need
a subset of the interleavings of C1 and C2 to simulate those of C1

and C2. Thus the high-level relies and guarantees need to ensure
the existence of those interleavings only. Below we give a simple
example to explain this subtle issue. We can prove

(x:=x+2,R,G) �α;ζ�γ (x:=x+1;x:=x+1,R,G) , (4.1)

where the relies and the guarantees say x can be increased by 2 and
α, ζ and γ relate x of the two sides:

R = G � {(σ, σ′) | σ′ = σ ∨ σ′ = σ{x� σ(x) + 2}} ;
R = G � {(Σ,Σ′) | Σ′ = Σ ∨ Σ′ = Σ{x� Σ(x) + 2}} ;
α = ζ = γ � {(σ,Σ) | σ(x) = Σ(x)} .

Note that the high-level program is actually finer-grained than its
guarantee, but to prove (4.1) we only need the execution in which it
goes two steps to the end without interference from its environment.
Also we can prove (print(x),R,G) �α;ζ�γ (print(x),R,G).
Then by the PAR rule, we get

(x:=x+2‖print(x),R,G) �α;ζ�γ
((x:=x+1;x:=x+1)�print(x),R,G) ,

which does not violate the natural meaning of refinements. That is,
all the possible external events produced by the low-level side can

6 2011/11/5



ζ ⊆ α

(skip,R, Id) �α;ζ�ζ (skip,R, Id)
(SKIP)

(C1,R,G) �α;ζ�γ (C1,R,G) (C2,R,G) �α;γ�η (C2,R,G)

(C1;C2,R,G) �α;ζ�η (C1; ;C2,R,G)
(SEQ)

(C1,R,G) �α;ζ1�γ (C1,R,G) (C2,R,G) �α;ζ2�γ (C2,R,G)

ζ ⊆ (B⇔⇔B) ζ1 = (ζ ∩ (B∧∧B)) ζ2 = (ζ ∩ (¬B∧∧¬B)) ζ ⊆ α

(if (B) C1 else C2,R,G) �α;ζ�γ (if B then C1 else C2,R,G)
(IF)

(C,R,G) �α;γ1�γ (C,R,G) γ ⊆ (B⇔⇔B) γ1 = (γ ∩ (B∧∧B)) γ2 = (γ ∩ (¬B∧∧¬B))
(while (B) C,R,G) �α;γ�γ2

(while B do C,R,G)
(WHILE)

(C1,R1,G1) �α;ζ�γ1
(C1,R1,G1) (C2,R2,G2) �α;ζ�γ2

(C2,R2,G2)

G1 ⊆ R2 G2 ⊆ R1 G1 ⊆ R2 G2 ⊆ R1

(C1‖C2,R1 ∩R2,G1 ∪ G2) �α;ζ�(γ1∩γ2)
(C1�C2,R1 ∩ R2,G1 ∪ G2)

(PAR)

(C,R,G) �α;ζ�γ (C,R,G)

(ζ ∪ γ) ⊆ α′ ⊆ α Sta(α′, 〈G,G∗〉α)
(C,R,G) �

α′;ζ�γ
(C,R,G)

(STREN-α)

(C,R,G) �α;ζ�γ (C,R,G)

α ⊆ α′ Sta(α, 〈R,R∗〉α′ )

(C,R,G) �
α′;ζ�γ

(C,R,G)
(WEAKEN-α)

(C,R,G) �α;ζ�γ (C,R,G) ζ′ ⊆ ζ γ ⊆ γ′ ⊆ α R′ ⊆ R R′ ⊆ R G ⊆ G′ G ⊆ G′

(C,R′,G′) �
α;ζ′�γ′ (C,R′,G′)

(CONSEQ)

(C,R,G) �α;ζ�γ (C,R,G)

η ⊆ β Intuit({α, ζ, γ, β, η,R,R,R1,R1})
η # {ζ, γ, α} Sta(η, {〈G,G∗〉α, 〈R1,R∗

1〉β})
(C,R�R1,G � G1) �α�β;(ζ�η)�(γ�η)

(C,R � R1,G � G1)
(FRAME)

(C,R,G) �α;ζ�γ (M,RM,GM)

(M,RM,GM) �β;δ�η (C,R,G)

RM isMidOf (α, β;R,R∗)

(C,R,G) �
β◦α;(δ◦ζ)�(η◦γ) (C,R,G)

(TRANS)

Figure 7. Compositionality Rules for RGSim

also be produced by the high-level side, although the latter could
have more external behaviors due to its finer granularity.

Another subtlety in the RGSim definition is with the fifth con-
dition over the environments, which is crucial for parallel composi-
tionality. One may think a more natural alternative to this condition
is to require thatR be simulated by R:

If (σ, σ′) ∈ R, then there exists Σ′ such that
(Σ,Σ′) ∈ R

∗ and (C, σ′,R,G) �′
α;ζ�γ (C,Σ′,R,G) .

(4.2)

We refer to this modified simulation definition as �′. Unfortu-
nately, �′ does not have parallel compositionality. As a counter-
example, if the invariant α says the left-side x is not greater than
the right-side x and the precondition ζ requires x of the two sides
are equal, i.e.,

α � {(σ,Σ) | σ(x) ≤ Σ(x)} ζ � {(σ,Σ) | σ(x) = Σ(x)} ,
we could prove the following:

(x:=x+1, Id,True) �′
α;ζ�α (x:=x+2, Id,True) ;

(print(x),True, Id) �′
α;ζ�α (print(x),True, Id) .

Here we use Id and True (defined in Figure 6) for the sets of identity
transitions and arbitrary transitions respectively, and overload the
notations at the low level to the high level. However, the following
refinement does not hold after parallel composition:

(x:=x+1‖print(x), Id,True) �′
α;ζ�α

(x:=x+2�print(x), Id,True) .

This is because the rely R (or R) is an abstraction of all the per-
mitted behaviors in the environment of a thread. But a concrete
sibling thread that runs in parallel may produce less transitions
than R (or R). To obtain parallel compositionality, we need to en-
sure that the simulation holds for all concrete sibling threads. With
our definition �, the refinement (print(x),True, Id) �α;ζ�α

(print(x),True, Id) is not provable because, after the environ-
ments’ α-related transitions, the target may print a value smaller
than the one printed by the source.

Other rules. We also develop some other useful rules about
RGSim. For example, the STREN-α rule allows us to replace the
invariant α by a stronger invariant α′. We need to check that α′

is indeed an invariant preserved by the related program steps, i.e.,
Sta(α′, 〈G,G∗〉α) holds. Symmetrically, the WEAKEN-α rule re-
quires α to be preserved by environment steps related by the weaker
invariant α′. As usual, the pre/post conditions, the relies and the
guarantees can be strengthened or weakened by the CONSEQ rule.

The FRAME rule allows us to use local specifications. When ver-
ifying the simulation between C and C, we need to only talk about
the locally-used resource in α, ζ and γ, and the local relies and
guarantees R, G, R and G. Then the proof can be reused in con-
texts where some extra resource η is used, and the accesses of it
respect the invariant β and R1, G1, R1 and G1. We give the auxil-
iary definitions in Figure 6. The disjoint union � between states is
lifted to state pairs. An intuitionistic state relation is monotone w.r.t.
the extension of states. The disjointness η # α says that any state
pair satisfying both η and α can be split into two disjoint state pairs
satisfying η and α respectively. For example, let η � {(σ,Σ) |
σ(y) = Σ(y)} and α � {(σ,Σ) | σ(x) = Σ(x)}, then both η
and α are intuitionistic and η # α holds. We also require η to be
stable under interference from the programs (i.e., the programs do
not change the extra resource) and the extra environments. We use
η # {ζ, γ, α} as a shorthand for (η # ζ) ∧ (η # γ) ∧ (η # α).
Similar representations are used in this rule.

Finally, the transitivity rule TRANS allows us to verify a trans-
formation by using an intermediate level as a bridge. The interme-
diate environment RM should be chosen with caution so that the
(β ◦ α)-related transitions can be decomposed into β-related and
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α-related transitions, as illustrated in Figure 4(b). Here ◦ defines
the composition of two relations and isMidOf defines the side con-
dition over the environments, as shown in Figure 6. We use θ for a
middle-level state.

We give all the soundness proofs in Appendix A and B. The
proofs [20] are also mechanized in the Coq proof assistant [10].

Instantiations of relies and guarantees. We can derive the se-
quential refinement and the fully-abstract-semantics-based refine-
ment by instantiating the rely conditions in RGSim. For example,
the refinement (4.3) over closed programs assumes identity envi-
ronments, making the interference constraints in the PAR rule un-
satisfiable. This confirms the observation in Section 2.1 that the
sequential refinement loses parallel compositionality.

(C, Id,True) �α;ζ�γ (C, Id,True) (4.3)

The refinement (4.4) assumes arbitrary environments, which makes
the interference constraints in the PAR rule trivially true. But this as-
sumption is too strong: usually (4.4) cannot be satisfied in practice.

(C,True,True) �α;ζ�γ (C,True,True) (4.4)

4.3 A Simple Example

Below we give a simple example to illustrate the use of RGSim
and its parallel compositionality in verifying concurrent program
transformations. The high-level program C1�C2 is transformed to
C1 ‖C2, using a lock l to synchronize the accesses of the shared
variable x. We aim to prove C1‖C2 �T C1�C2. That is, although
x:=x+2 is implemented by two steps of incrementing x in C2, the
parallel observer C1 will not print unexpected values. Here we view
output events as externally observable behaviors.

print(x); � x := x + 2;

⇓
lock(l);
print(x);
unlock(l);

‖
lock(l);
x := x+1; x := x+1;

〈unlock(l); X := x; 〉

To facilitate the proof, we introduce an auxiliary shared vari-
able X at the low level to record the value of x at the time when
releasing the lock. It specifies the value of x outside every critical
section, thus should match the value of the high-level x after every
corresponding action. Here 〈C〉 means C is executed atomically.

By the soundness and compositionality of RGSim, we only need
to prove simulations over individual threads, providing appropriate
relies and guarantees. We first define the invariant α, which only
cares about the value of x when the lock is free.

α � {(σ,Σ) | σ(X) = Σ(x) ∧ (σ(l)=0 =⇒ σ(x) = σ(X))} .
We let the pre- and post-conditions be α as well.

The high-level threads can be executed in arbitrary environ-
ments with arbitrary guarantees: R = G � True. The transfor-
mation uses the lock to protect every access of x, thus the low-level
relies and guarantees are not arbitrary:

R � {(σ, σ′) | σ(l)=cid =⇒
σ(x)=σ′(x) ∧ σ(X)=σ′(X) ∧ σ(l)=σ′(l)} ;

G � {(σ, σ′) | σ′=σ ∨ σ(l)=0 ∧ σ′=σ{l� cid}
∨ σ(l)=cid ∧ σ′=σ{x� }
∨ σ(l)=cid ∧ σ′=σ{l� 0, X� }} .

Every low-level thread guarantees that it updates x only when the
lock is acquired. Its environment cannot update x or l if the current
thread holds the lock. Here cid is the identifier of the current
thread. When acquired, the lock holds the id of the owner thread.

Following the definition, we can prove (C1,R,G) �α;α�α

(C1,R,G) and (C2,R,G) �α;α�α (C2,R,G). By applying the
PAR rule and from the soundness of RGSim (Corollary 6), we know
C1‖C2 �T C1�C2 holds for any T that respects α.

Perhaps interestingly, if we omit the lock and unlock operations
in C1, then C1‖C2 would have more externally observable behav-
iors than C1 �C2. This does not indicate the unsoundness of our
PAR rule (which is sound!). The reason is that x might have dif-
ferent values on the two levels after the environments’ α-related
transitions, so that we cannot have (print(x),R,G) �α;α�α

(print(x),R,G) with the current definitions of α,R and G, even
though the code of the two sides are syntactically identical.

More discussions. RGSim ensures that the target program pre-
serves safety properties (including the partial correctness) of the
source, but allows a terminating source program to be transformed
to a target having infinite silent steps. In the above example, this al-
lows the low-level programs to be blocked forever (e.g., at the time
when the lock is held but never released by some other thread).
Proving the preservation of the termination behavior would require
liveness proofs in a concurrent setting (e.g., proving the absence of
deadlock), which we leave as future work.

In the next three sections, we show more serious examples to
demonstrate the applicability of RGSim.

5. Relational Reasoning about Optimizations
As a general correctness notion of concurrent program transforma-
tions, RGSim establishes a relational approach to justify compiler
optimizations on concurrent programs. Below we adapt Benton’s
work [3] on sequential optimizations to the concurrent setting.

5.1 Optimization Rules

Usually optimizations depend on particular contexts, e.g., the as-
signment x := E can be eliminated only in the context that the
value of x is never used after the assignment. In a shared-state con-
current setting, we should also consider the parallel context for an
optimization. RGSim enables us to specify various sophisticated
requirements for the parallel contexts by rely/guarantee conditions.
Based on RGSim, we provide a set of inference rules to character-
ize and justify common optimizations (e.g., dead code elimination)
with information of both the sequential and the parallel contexts.
Note in this section the target and the source programs are in the
same language.

Reflexivity

R;G � {p}C{q}
(C,R,G) �

Id;[p]�[q]
(C,R,G)

For the code which is unchanged after optimizations, we can prove
the simulation by the judgment in Rely-Guarantee logic. Here we
use [p] to mean the states of the two sides are the same and satisfy
the predicate p. That is, [p] � {(σ, σ) | p σ}.

Sequential skip Law
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(C1,R1,G1) �α;ζ�γ (C2,R2,G2)

(skip;C1,R1,G1) �α;ζ�γ (C2,R2,G2)

(C1,R1,G1) �α;ζ�γ (C2,R2,G2)

(C1; skip,R1,G1) �α;ζ�γ (C2,R2,G2)

(C1,R1,G1) �α;ζ�γ (C2,R2,G2)

(C1,R1,G1) �α;ζ�γ (skip;C2,R2,G2)

(C1,R1,G1) �α;ζ�γ (C2,R2,G2)

(C1,R1,G1) �α;ζ�γ (C2; skip,R2,G2)

That is, skips could be arbitrarily introduced and eliminated.

Common Branch
∀σ1, σ2. (σ1, σ2) ∈ ζ =⇒ B σ2 �=⊥

(C,R,G) �α;ζ1�γ (C1,R′,G′) ζ1 = (ζ ∩ (true∧∧B))

(C,R,G) �α;ζ2�γ (C2,R′,G′) ζ2 = (ζ ∩ (true∧∧¬B))

(C,R,G) �α;ζ�γ (if (B) C1 else C2,R′,G′)

This rule says that, when the if-condition can be evaluated and both
branches can be optimized to the same code C, we can transform
the whole if-statement to C without introducing new behaviors.

Known Branch
(C,R,G) �α;ζ�γ (C1,R′,G′) ζ = (ζ ∩ (true∧∧B))

(C,R,G) �α;ζ�γ (if (B) C1 else C2,R′,G′)

(C,R,G) �α;ζ�γ (C2,R′,G′) ζ = (ζ ∩ (true∧∧¬B))

(C,R,G) �α;ζ�γ (if (B) C1 else C2,R′,G′)

This rule can be derived from the Common-Branch rule.

Dead While
ζ = (ζ ∩ (true∧∧¬B)) ζ ⊆ α Sta(ζ, 〈R1,R∗

2〉α)
(skip,R1, Id) �α;ζ�ζ (while (B){C},R2, Id)

We can eliminate the loop, if the loop condition is false (no matter
how the environments update the states) at the loop entry point.

Loop Unrolling
(while (B){C},R1,G1) �α;ζ�γ (while (B){C},R2,G2)

(if (B) {C;while (B){C}} else skip,R1,G1) �α;ζ�γ
(while (B){C},R2,G2)

(while (B){C},R1,G1) �α;ζ�γ (while (B){C},R2,G2)

(while (B){C; if (B) C else skip},R1,G1) �α;ζ�γ
(while (B){C},R2,G2)

We show two ways to unroll the while-loop, ensuring semantics
preservation in the concurrent setting.

Dead Code Elimination
(skip, Id, Id) �α;ζ�γ (C, Id,G) Sta({ζ, γ}, 〈R1,R∗

2〉α)
(skip,R1, Id) �α;ζ�γ (C,R2,G)

Intuitively (skip, Id, Id) �α;ζ�γ (C, Id,G) says that the code C
can be eliminated in a sequential context where the initial and the
final states satisfy ζ and γ respectively. If both ζ and γ are stable
w.r.t. the interference from the environments R1 and R2, then the
code C can be eliminated in such a parallel context as well.

Redundancy Introduction
(c, Id,G) �α;ζ�γ (skip, Id, Id) Sta({ζ, γ}, 〈R1,R∗

2〉α)
(c,R1,G) �α;ζ�γ (skip,R2, Id)

As we lifted sequential dead code elimination, we can also lift se-
quential redundant code introduction to the concurrent setting, so
long as the pre- and post-conditions are stable w.r.t. the environ-
ments. Note that here c is a single instruction, because we should
consider the interference from the environments at every interme-
diate state when introducing a sequence of redundant instructions.

5.2 An Example of Invariant Hoisting

With these rules, we can prove the correctness of many traditional
compiler optimizations performed on concurrent programs in ap-
propriate contexts. Here we only give a small example of hoist-
ing loop invariants. More optimization examples (e.g., strength re-
duction and induction variable elimination) can be found in Ap-
pendix D.

Target Code (C1)
local t;
t := x + 1;
while(i < n) {

i := i + t;
}

⇐

Source Code (C)
local t;
while(i < n) {

t := x + 1;
i := i + t;

}

When we do not care about the final value of t, it’s not diffi-
cult to prove that the optimized code C1 preserves the sequential
behaviors of the source C [3]. But in a concurrent setting, safely
hoisting the invariant code t:=x+1 also requires that the environ-
ment should not update x nor t.

R � {(σ, σ′) | σ(x) = σ′(x) ∧ σ(t) = σ′(t)} .
The guarantee of the program can be specified as arbitrary transi-
tions. Since we only care about the values of i, n and x, the invari-
ant relation α can be defined as:

α � {(σ1, σ) | σ1(i) = σ(i) ∧ σ1(n) = σ(n) ∧ σ1(x) = σ(x)} .
We do not need special pre- and post-conditions, thus the correct-
ness of the optimization is formalized as follows:

(C1,R,True) �α;α�α (C,R,True) . (5.1)

We could prove (5.1) directly by the RGSim definition and the
operational semantics of the code. But below we give a more con-
venient proof using the optimization rules and the compositional-
ity rules instead. We first prove the following by the Dead-Code-
Elimination and Redundancy-Introduction rules:

(t:=x+1,R,True) �α;α�γ (skip,R,True) ;
(skip,R,True) �α;γ�η (t:=x+1,R,True) ,

where γ and η specify the states at the specific program points:

γ � α ∩ {(σ1, σ) | σ1(t) = σ1(x) + 1} ;
η � γ ∩ {(σ1, σ) | σ(t) = σ(x) + 1} .

After adding skips to C1 and C to make them the same “shape”,
we can prove the simulation by the compositionality rules SEQ and
WHILE. Finally, we remove all the skips and conclude (5.1), i.e.,
the correctness of the optimization in appropriate contexts. Since
the relies only prohibit updates of x and t, we can execute C1 and
C concurrently with other threads which update i and n or read x,
still ensuring semantics preservation.

6. Proving Atomicity of Concurrent Objects
A concurrent object provides a set of methods, which can be called
in parallel by clients as the only way to access the object. RGSim
gives us a refinement-based proof method to verify the atomicity
of implementations of the object: we can define abstract atomic
operations in a high-level language as specifications, and prove
the concrete fine-grained implementations refine the correspond-
ing atomic operations when executed in appropriate environments.
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ADD(e) : RMV(e) :
0 atom {

S := S ∪ {e};
}

0 atom {
S := S− {e};

}

(a) An Abstract Set

add(e) : rmv(e) :

local x,y,z,u;
0 <x := Head;>
1 lock(x);
2 <z := x.next;>
3 <u := z.data;>
4 while (u < e) {
5 lock(z);
6 unlock(x);
7 x := z;
8 <z := x.next;>
9 <u := z.data;>

}
10 if (u != e) {
11 y := new();
12 y.lock := 0;
13 y.data := e;
14 y.next := z;
15 <x.next := y;>

}
16 unlock(x);

local x,y,z,v;
0 <x := Head;>
1 lock(x);
2 <y := x.next;>
3 <v := y.data;>
4 while (v < e) {
5 lock(y);
6 unlock(x);
7 x := y;
8 <y := x.next;>
9 <v := y.data;>

}
10 if (v = e) {
11 lock(y);
12 <z := y.next;>
13 <x.next := z;>
14 unlock(x);
15 free(y);

} else {
16 unlock(x);

}

(b) The Lock-Coupling List-Based Set

Figure 8. The Set Object

For instance, in Figure 8(a) we define two atomic set operations,
ADD(e) and RMV(e). Figure 8(b) gives a concrete implementation
of the set object using a lock-coupling list. Partial correctness and
atomicity of the algorithm has been verified before [28, 29]. Here
we show that its atomicity can also be verified using our RGSim
by proving the low-level methods refine the corresponding abstract
operations. We wil discuss the key difference between the previous
proofs and ours in Section 8.

We first take the generic languages in Figure 3, and instantiate
the high-level program states below.

(HMem) Ms,Ml ∈ (Loc ∪ PVar) ⇀ HVal

(HThrds) Π ∈ ThrdID → HMem

(HState) Σ ∈ HThrds × HMem

The state consists of shared memory Ms (where the object resides)
and a thread pool Π, which is a mapping from thread identifiers
(t ∈ ThrdID) to their memory Ml. The low-level state σ is defined
similarly. We use ms, ml and π to represent the low-level shared
memory, thread-local memory and the thread pool respectively.

To allow ownership transfer between the shared memory and
thread-local memory, we use atom{C}A (or 〈C〉A at the low level)
to convert the shared memory to local and then execute C (or
C) atomically. Following RGSep [29], an abstract transition A ∈
P(HMem×HMem) (orA ∈ P(LMem×LMem)) is used to specify
the effects of the atomic operation over the shared memory, which
allows us to split the resulting state back into shared and local when
we exit the atomic blocks. The atomic blocks are instantiations of
the generic primitive operations c (or c) in Figure 2. We omit the
annotations A and A in Figure 8, which are the same as the corre-
sponding guarantees in Figure 11, as we will explain below. Formal
presentations of the high-level and low-level languages and the op-
erational semantics are given in Figures 9 and 10 respectively.

(HStmts) C ::= skip | c | atom{C}A | C1;C2

| if (B) C1 else C2 | while (B){C}
(HProg) W ::= t1.C1‖ . . .‖ tn.Cn (ThrdID) t ∈ Nat

(HMem)Ms,Ml ∈ (Loc ∪ PVar) ⇀ HVal

(HThrds) Π ∈ ThrdID → HMem

(HState) Σ ∈ HThrds × HMem

(HAtomG) A ∈ P(HMem × HMem)

(a) The High-Level Language for Abstract Operations

(LStmts) C ::= skip | c | 〈C〉A | C1;C2

| if (B) C1 else C2 | while (B){C}
(LProg) W ::= t1.C1‖ . . .‖ tn.Cn

(LMem) ms,ml ∈ (Loc ∪ PVar) ⇀ LVal

(LThrds) π ∈ ThrdID → LMem

(LState) σ ∈ LThrds × LMem

(LAtomG) A ∈ P(LMem × LMem)

(b) The Low-Level Language for Concrete Implementations

Figure 9. The Languages for Concurrent Objects

In Figure 8, the abstract set is implemented by an ordered
singly-linked list pointed to by a shared variable Head, with two
sentinel nodes at the two ends of the list containing the values
MIN VAL and MAX VAL respectively. Each list node is associated
with a lock. Traversing the list uses “hand-over-hand” locking:
the lock on one node is not released until its successor is locked.
add(e) inserts a new node with value e in the appropriate position
while holding the lock of its predecessor. rmv(e) redirects the
predecessor’s pointer while both the node to be removed and its
predecessor are locked.

We define the α relation, the guarantees and the relies in Fig-
ure 11. The predicate ms |= list(x,A) represents a singly-linked
list in the shared memory ms at the location x, whose values form
the sequence A. Then the mapping shared map between the low-
level and the high-level shared memory is defined by only concern-
ing about the value sequence on the list: the concrete list should
be sorted and its elements constitute the abstract set. For a thread
t’s local memory of the two levels, we require that the values of
e are the same and enough local space is provided for add(e)
and rmv(e), as defined in the mapping local map. Then α relates
the shared memory by shared map and the local memory of each
thread t by local map.

The atomic actions of the algorithm are specified by Glock,
Gunlock, Gadd, Grmv and Glocal respectively, which are all parame-
terized with a thread identifier t. For example, Grmv(t) says that
when holding the locks of the node y and its predecessor x, we can
transfer the node y from the shared memory to the thread’s local
memory. This corresponds to the action performed by the code of
line 13 in rmv(e). Every thread t is executed in the environment
that any other thread t′ can only perform those five actions, as de-
fined in R(t). Similarly, the high-level G(t) and R(t) are defined
according to the abstract ADD(e) and RMV(e). The relies and guar-
antees are almost the same as those in the proofs in RGSep [28].

We can prove that for any thread t, the following hold:

(t.add(e),R(t),G(t)) �α;α�α (t.ADD(e),R(t),G(t)) ;
(t.rmv(e),R(t),G(t)) �α;α�α (t.RMV(e),R(t),G(t)) .

Detailed proofs are given in Appendix D.
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(C, (Ml �Ms, φ)) −→∗ (skip, (M ′′
l , φ)) M ′′

l = M ′
l �M ′

s (Ms,M ′
s) ∈ A

(atom{C}A, (Ml,Ms)) −→ (skip, (M ′
l ,M

′
s))

¬∃M ′′
l .∃M ′

l .∃M ′
s. (C, (Ml �Ms, φ)) −→∗ (skip, (M ′′

l , φ)) ∧M ′′
l = M ′

l �M ′
s ∧ (Ms,M ′

s) ∈ A)

(atom{C}A, (Ml,Ms)) −→ abort

(C, (Ml,Ms)) −→ (C′, (M ′
l ,M

′
s))

(t.C, (Π � {t�Ml},Ms)) −→ (t.C′, (Π � {t�M ′
l},M ′

s))

(C, (Ml,Ms)) −→ abort
(t.C, (Π � {t�Ml},Ms)) −→ abort

(ti.Ci,Σ) −→ (ti.C
′
i,Σ

′)

(t1.C1�. . . ti.Ci . . .�tn.Cn,Σ) −→ (t1.C1�. . . ti.C′
i . . .�tn.Cn,Σ′)

(ti.Ci,Σ) −→ abort
(t1.C1�. . . ti.Ci . . .�tn.Cn,Σ) −→ abort

Figure 10. Selected Operational Semantics Rules for the High-Level Language of Concurrent Objects

ms |= list(x,A) � (ms = φ ∧ x = null ∧A = ε) ∨ (∃m′
s.∃v.∃y.∃A′. ms = m′

s � {x� ( , v, y)} ∧A = v ::A′ ∧m′
s |= list(y,A′))

sorted(A) �
{

true if A = ε ∨A = a ::ε
(a < b) ∧ sorted(b ::A′) if A = a ::b ::A′

elems(A) �
{

φ if A = ε
{a} ∪ elems(A′) if A = a ::A′

shared map(ms,Ms) � ∃m′
s.∃A.∃x. ms = m′

s � {Head� x} ∧ (m′
s |= list(x, MIN VAL ::A ::MAX VAL)) ∧ sorted(A) ∧ (elems(A)=Ms(S))

local map(ml,Ml) � ml(e) = Ml(e) ∧ ∃m′
l. ml = m′

l � {x� , y� , z� , u� , v� }
α � {((π,ms), (Π,Ms)) | shared map(ms,Ms) ∧ ∀t ∈ dom(Π). local map(π(t),Π(t))}
Glock(t) � {((π,ms), (π,m′

s)) | ∃x, v, y. ms(x) = (0, v, y) ∧m′
s = ms{x� (t, v, y)}}

Gunlock(t) � {((π,ms), (π,m′
s)) | ∃x, v, y. ms(x) = (t, v, y) ∧m′

s = ms{x� (0, v, y)}}
Gadd(t) � {((π � {t� ml},ms), (π � {t� m′

l},m′
s))

| ∃x, y, z, u, v, w. ms(x) = (t, u, z) ∧ms(z) = ( , w, )
∧ m′

s = ms{x� (t, u, y)} � {y � (0, v, z)} ∧ (m′
l � {y � (0, v, z)} = ml) ∧ u < v < w}

Grmv(t) � {((π � {t� ml},ms), (π � {t� m′
l},m′

s))
| ∃x, y, z, u, v. ms(x) = (t, u, y) ∧ms(y) = (t, v, z)
∧ m′

s � {y � (t, v, z)} = ms{x� (t, u, z)} ∧m′
l = ml � {y � (t, v, z)} ∧ v < MAX VAL}

Glocal(t) � {((π � {t� ml},ms), (π � {t� m′
l},ms)) | π ∈ (ThrdID → LMem) ∧ml,m

′
l,ms ∈ LMem}

G(t) � Glock(t) ∪ Gunlock(t) ∪ Gadd(t) ∪ Grmv(t) ∪ Glocal(t) R(t) �
⋃

t′ �=t G(t′)
Gadd(t) � {((Π � {t�Ml},Ms), (Π � {t�M ′

l},M ′
s)) | ∃e. M ′

s = Ms{S�Ms(S)∪{e}}}
Grmv(t) � {((Π � {t�Ml},Ms), (Π � {t�M ′

l},M ′
s)) | ∃e. M ′

s = Ms{S�Ms(S)−{e}}}
Glocal(t) � {((Π � {t�Ml},Ms), (Π � {t�M ′

l},Ms)) | Π ∈ (ThrdID → HMem) ∧Ml,M
′
l ,Ms ∈ HMem}

G(t) � Gadd(t) ∪ Grmv(t) ∪ Glocal(t) R(t) �
⋃

t′ �=t G(t′)

Figure 11. Useful Definitions for the Lock-Coupling List

By the compositionality and the soundness of RGSim, we know
that the fine-grained operations (under the parallel environmentR)
are simulated by the corresponding atomic operations (under the
high-level environment R), while R and R say all accesses to the
set must be done through the add and remove operations. This gives
us the atomicity of the concurrent implementation of the set object.

More examples. In Appendix D, we also show the use of RGSim
to prove the atomicity of other fine-grained algorithms, includ-
ing the non-blocking concurrent counter [27], Treiber’s stack algo-
rithm [26], and a concurrent GCD algorithm (calculating greatest
common divisors).

7. Verifying Concurrent Garbage Collectors
In this section, we explain in detail how to reduce the problem of
verifying concurrent garbage collectors to transformation verifica-
tion, and use RGSim to develop a general GC verification frame-
work. We apply the framework to prove the correctness of the
Boehm et al. concurrent GC algorithm [7].

7.1 Correctness of Concurrent GCs

A concurrent GC is executed by a dedicate thread and performs
the collection work in parallel with user threads (mutators), which
access the shared heap via read, write and allocation operations. To
ensure that the GC and the mutators share a coherent view of the
heap, the heap operations from mutators may be instrumented with
extra operations, which provide an interaction mechanism to allow
arbitrary mutators to cooperate with the GC. These instrumented
heap operations are called barriers (e.g., read barriers, write barriers
and allocation barriers).

The GC thread and the barriers constitute a concurrent garbage
collecting system, which provides a higher-level user-friendly pro-
gramming model for garbage-collected languages (e.g., Java). In
this high-level model, programmers feel they access the heap using
regular memory operations, and are freed from manually disposing
objects that are no longer in use. They do not need to consider the
implementation details of the GC and the existence of barriers.

We could verify the GC system by using a Hoare-style logic to
prove that the GC thread and the barriers satisfy their specifications.
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However, we say this is an indirect approach because it is unclear
if the specified correct behaviors would indeed make the mutators
happy and generate the abstract view for high-level programmers.
Usually this part is examined by experts and then trusted.

Here we propose a more direct approach. We view a concurrent
garbage collecting system as a transformation T from a high-level
garbage-collected language to a low-level language. A standard
atomic memory operation at the source level is transformed into the
corresponding barrier code at the target level. In the source level,
we assume there is an abstract GC thread that magically turns
unreachable objects into reusable memory. The abstract collector
AbsGC is transformed into the concrete GC code Cgc running
concurrently with the target mutators. That is,

T(tgc.AbsGC�t1.C1�. . .�tn.Cn) �
tgc.Cgc ‖ t1.T(C1)‖ . . .‖ tn.T(Cn) ,

where T(C) simply translates some memory access instructions in
C into the corresponding barriers, and leaves the rest unchanged.

Then we reduce the correctness of the concurrent garbage col-
lecting system to Correct(T), saying that any mutator program will
not have unexpected behaviors when executed using this system.

7.2 A General Framework

The compositionality of RGSim allows us to develop a general
framework to prove Correct(T), which cannot be done by mono-
lithic proof methods. By the parallel compositionality of RGSim
(the PAR rule in Figure 7), we can decompose the refinement proofs
into proofs for the GC thread and each mutator thread.

Verifying the GC. The semantics of the abstract GC thread can
be defined by a binary state predicate AbsGCStep:

(Σ,Σ′) ∈ AbsGCStep

(tgc.AbsGC,Σ) −→ (tgc.AbsGC,Σ′)

That is, the abstract GC thread always makes AbsGCStep to change
the high-level state. We can choose different AbsGCStep for differ-
ent GCs, but usually AbsGCStep guarantees not modifying reach-
able objects in the heap.

Thus for the GC thread, we need to show that Cgc is simulated
by AbsGC when executed in their environments. This can be re-
duced to unary Rely-Guarantee reasoning about Cgc by proving
Rgc;Ggc � {pgc}Cgc{qgc} in a standard Rely-Guarantee logic with
proper Rgc, Ggc, pgc and qgc, as long as Ggc is a concrete repre-
sentation of AbsGCStep. The judgment says given an initial state
satisfying the precondition pgc, if the environment’s behaviors sat-
isfy Rgc, then each step of Cgc satisfies Ggc, and the postcondition
qgc holds at the end if Cgc terminates. In general, the collector never
terminates, thus we can let qgc be false. Ggc and pgc should be pro-
vided by the verifier, where pgc needs to be general enough that can
be satisfied by any possible low-level initial state.Rgc encodes the
possible behaviors of mutators, which can be derived, as we will
show below.

Verifying mutators. For the mutator thread, since T is syntax-
directed on C, we can reduce the refinement problem for arbitrary
mutators to the refinement on each primitive instruction only, by the
compositionality of RGSim. The proof needs proper rely/guarantee
conditions. Let G(t.c) and G(t.T(c)) denote the guarantees of the
source instruction c and the target code T(c) respectively. Then we
can define the general guarantees for a mutator thread t:

G(t) �
⋃

c G(t.c) ;
G(t) �

⋃
c G(t.T(c)) .

(7.1)

Its relies should include all the possible guarantees made by other
threads, and the GC’s abstract and concrete behaviors respectively:

R(t) � AbsGCStep ∪⋃
t′ �=t G(t′) ;

R(t) � Ggc ∪⋃
t′ �=t G(t′) .

(7.2)

TheRgc used to verify the GC code can now be defined below:

Rgc �
⋃

t G(t) . (7.3)

The refinement proof also needs definitions of binary α, ζ and
γ relations. The invariant α relates the low-level and the high-level
states and needs to be preserved by each low-level step. In general,
a high-level state Σ can be mapped to a low-level state σ by giving
a concrete local store for the GC thread, adding additional struc-
tures in the heap (to record information for collection), renaming
heap cells (for copying GCs), etc.. For each mutator thread t, the
relations ζ(t) and γ(t) need to hold at the beginning and the end of
each basic transformation unit (every high-level primitive instruc-
tion in this case) respectively. We let γ(t) be the same as ζ(t) to
support sequential compositions. We require InitRelT(ζ(t)) (see
Figure 6), i.e., ζ(t) holds over the initial states. In addition, the tar-
get and the source boolean expressions should be evaluated to the
same value under related states, as required in the IF and WHILE
rules in Figure 7.

GoodT(ζ(t)) � InitRelT(ζ(t))∧∀B. ζ(t) ⊆ (T(B)⇔⇔B) (7.4)

Theorem 8 (Verifying Concurrent Garbage Collecting Systems).
If there exist Rgc, Ggc, pgc, R(t), R(t), ζ(t) and α such that (7.1),
(7.2), (7.3), (7.4) and the following hold:

1. (Verification of the GC code)
Rgc;Ggc � {pgc}Cgc{false};

2. (Correctness of T on mutator instructions)
∀c. (t.T(c),R(t),G(t)) �α;ζ(t)�ζ(t) (t.c,R(t),G(t));

3. (Side Conditions)
Ggc ◦ α−1 ⊆ α−1 ◦ (AbsGCStep)∗;
∀σ,Σ. σ = T(Σ) =⇒ pgc σ;

then Correct(T).

That is, to verify a concurrent garbage collecting system, we
need to do the following:

• Define the α and ζ(t) relations, and prove the correctness of T
on high-level primitive instructions. Since T preserves the syn-
tax on most instructions, it’s often immediate to prove the target
instructions are simulated by their sources. But for instructions
that are transformed to barriers, we need to verify the barriers
that they implement both the source instructions (by RGSim)
and the interaction mechanism (shown in their guarantees).

• Find some proper Ggc and pgc, and verify the GC code by R-G
reasoning. We require the GC’s guarantee Ggc should not con-
tain more behaviors than AbsGCStep (the first side condition),
and Cgc can start its execution from any state σ transformed
from a high-level one (the second side condition).

The proof of Theorem 8 is given in Appendix C.

7.3 Application: Boehm et al. Concurrent GC Algorithm

We illustrate the applications of the framework (Theorem 8)
by proving the correctness of a mostly-concurrent mark-sweep
garbage collector proposed by Boehm et al. [7]. Variants of the
algorithm have been used in practice (e.g., by IBM [2]). Due to
the space limit, we only describe the proof sketch here. Details are
presented in Appendix E.
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{{wfstate}}
0 Collection() {
1 local mstk: Seq(Int);

Loop Invariant: {{wfstate ∗ (ownnp(mstk) ∧ mstk = ε)}}
2 while (true) {
3 Initialize();

{{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}}
4 Trace();

{{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}}
5 CleanCard();

{{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}}
atomic{

6 ScanRoot();
{{∃X.(wfstate ∧ reach rtnw stk(X) ∧ stk black(X))

∗(ownnp(mstk) ∧ mstk = X)}}
7 CleanCard();

}
{{(wfstate ∧ reach black) ∗ (ownnp(mstk) ∧ mstk = ε)}}

8 Sweep();
}

}
{{false}}

Figure 12. Outline of the GC Code and Proof Sketch

update(x.id, E) { // id ∈ {pt1, ..., ptm}
atomic{ x.id := E; aux := x; }

atomic{ x.dirty := 1; aux := 0; }

}

Figure 13. The Write Barrier for Boehm et al. GC

Overview of the GC algorithm. The top-level code of the GC
thread is shown in Figure 12. In each collection cycle, after an
initialization process, the GC enters the concurrent mark-phase
(line 4) and traces the objects reachable from the roots (i.e., the
mutators’ local pointer variables that may contain references to
the heap objects). A mark stack (mstk) is used to do a depth-first
tracing. During the tracing, the connectivity between objects might
be changed by the mutators, thus a write barrier is required to notify
the collector of those modified objects by dirtying the objects’
tags (called cards). When the tracing is done, the GC suspends all
the mutators and re-traces from the dirty objects that have been
marked (called card-cleaning, line 6 and 7). The stop-the-world
phase is implemented by atomic{C}. Finally, all the reachable
objects are ensured marked and the GC performs the concurrent
sweep-phase (line 8), in which unmarked objects are reclaimed.
Usually in practice, there is also a concurrent card-cleaning phase
(line 5) before the stop-the-world card-cleaning to reduce the pause
time. The full GC code Cgc is given in Appendix E.2. Cgc can use
privilege commands to control the mutator threads and manage the
heap, e.g., use x := get root(y) to read all the pointer variables in
the thread y’s store and use free(x) to reclaim an object.

The write barrier is shown in Figure 13, where the dirty field
is set after modifying the object’s pointer field. Here we use a
write-only auxiliary variable aux for each mutator thread to record
the current object that the mutator is updating. We add aux only
for the purpose of verification, so that we can easily specify the
fine-grained property of the write barrier in the guarantees that
immediately after updating the pointer field, the thread would do
nothing else except setting the corresponding dirty field. The GC
does not use read barriers nor allocation barriers.

We first present the high-level and low-level languages and state
models in Figures 14 and 15 respectively. See Appendix E.1 for full

(HExpr) E ::= x | n | nil | E+E | E−E | . . .
(HBExp) B ::= true | false | E=E | !B | . . .
(HInstr) c ::= print(E) | x :=E | x := y.id | x.id := E | x := new()
(HStmts) C ::= skip | c | C1; ;C2 | if B then C1 else C2 | while B do C

(HProg)W ::= tgc.AbsGC�t1.C1�. . .�tn.Cn

(HField) id ∈ {pt1, . . . , ptm, data}
(MutID) t ∈ [1..N ]

(a) The Language

(Loc) l ∈ {L1, . . . , LM , nil}
(HVal) V ∈ Int ∪ Loc

(HStore) S ∈ PVar ⇀ HVal

(HObj) O ∈ HField → HVal

(HHeap) H ∈ Loc ⇀ HObj

(HThrds) Π ∈ MutID → HStore

(HState) Σ ∈ HThrds × HHeap

(b) Program States

Figure 14. The High-level Language and State Model

(LExpr) E ::= x | n | E+E | E−E | . . .
(LBExp) B ::= true | false | E=E | !B | is empty(x) | . . .
(LInstr) c ::= print(E) | x :=E | x := y.id | x.id := E | x := new()

| x := get root(y) | free(x) | push(x, y) | x := pop(y)
(LStmts) C ::= skip | c | C1;C2 | if (B) C1 else C2 | while (B) C

| atomic{C} | foreach x in y do C

(LProg)W ::= tgc.Cgc ‖ t1.C1‖ . . .‖ tn.Cn

(LField) id ∈ {pt1, . . . , ptm, data, color, dirty}

(a) The Language

(LVal) v ∈ Int ∪ Set(LVal) ∪ Seq(LVal)

(LStore) s ∈ PVar ⇀ LVal × {0, 1}
(LObj) o ∈ LField ⇀ LVal

(LHeap) h ∈ [1..M ] ⇀ LObj

(LThrds) π ∈ (MutID ∪ {tgc}) → LStore

(LState) σ ∈ LThrds × LHeap

(b) Program States

Figure 15. The Low-level Language and State Model

descriptions of the machine models. The behaviors of the high-level
abstract GC thread are defined as follows:

AbsGCStep � {((Π,H), (Π,H′))
| ∀l. reachable(l)(Π,H) =⇒ H(l) = H′(l)} ,

saying that, the mutator stores and the reachable objects in the
heap are remained unmodified. Here reachable(l)(Π,H) means the
object at the location l is reachable in H from the roots in Π.

The transformation. The transformation T is defined in Fig-
ure 16. For code, the high-level abstract GC thread is transformed
to the GC thread shown in Figure 12. Each instruction x.id := E

in mutators is transformed to the write barrier, where id is a pointer
field of x. Other instructions and the program structures of mutators
are unchanged.
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The following transformations are made over initial states.

• First we require the high-level initial state to be well-formed:
wfstate(Π,H) � ∀l. reachable(l)(Π,H) =⇒ l ∈ dom(H) .

That is, reachable locations cannot be dangling pointers.
• High-level locations are transformed to integers by a bijective

function Loc2Int : Loc↔ [0..M ] satisfying Loc2Int(nil) = 0.
• Variables are transformed to the low level using an extra bit to

preserve the high-level type information (0 for non-pointers and
1 for pointers). Usually we use vnp and vp short for (v, 0) and
(v, 1) respectively.

• High-level objects are transformed to the low level by adding
the color and dirty fields with initial values WHITE and 0 re-
spectively. Other addresses in the low-level heap domain [1..M ]
are filled out using unallocated objects whose colors are BLUE
and all the other fields are initialized by 0. Here we use BLACK
and WHITE for marked and unmarked objects respectively, and
BLUE for unallocated memory.

• The concrete GC thread is given an initial store where its local
variables are initialized by 0 (for integer and pointer variables),
ε (for the mark stack mstk) or φ (for the root set rt).

sgc init � {mstk� εnp, rt� φnp, i� 0p, j� 0p,
c� 0np, d� 0np, t� 0np}

To prove Correct(T) in our framework, we apply Theorem 8,
prove the refinement between low-level and high-level mutators,
and verify the GC code using a unary Rely-Guarantee-based logic.

Refinement proofs for mutator instructions. We first define the
α and ζ(t) relations.

α � {((π � {tgc � }, h), (Π,H)) |
∀t ∈ dom(Π). store map(π(t),Π(t))
∧ heap map(h,H) ∧ wfstate(Π,H)} .

In α, the relation between low-level and high-level stores and heaps
are enforced by store map and heap map respectively. Their def-
initions reflect the state transformations we describe above, where
we consider well-formed states only and use Loc2Int to relate in-
tegers and locations. The difference between α and T only lies in
that, in α we do not care about the values of the extra structures
which are invisible on the high-level machine (e.g., the GC’s local
variables, the color and dirty fields for non-blue objects and all
the fields of blue objects) as long as they are valid. We present the
formal definition of α in Figure 17.

For each mutator thread t, the ζ(t) relation enforced at the
beginning and the end of each transformation unit (each high-level
instruction) is stronger than α. It requires that the value of the
auxiliary variable aux (see Figure 13) be a null pointer (0p):

ζ(t) � α ∩ {((π, h), (Π,H)) | π(t)(aux) = 0p} .

As shown in Figure 18, the guarantees of the high-level mutator
instructions and the transformed code are defined following their
operational semantics. We can prove correctness of the write bar-
rier:

(t.update(x.id, E),R(t),Gtwrite barrier) �α;ζ(t)�ζ(t)

(t.(x.id := E),R(t),Gt
write pt)

where Gtwrite barrier � Gtwrite pt ∪ Gtset dirty and G
t
write pt are the guaran-

tees of the two-step write barrier and the high-level atomic write
operation respectively. The proof is given in Appendix E.5. Since
the transformation of other high-level instructions is identity, the
proofs of the refinement are simple. For example, it’s not difficult
to prove:

(t.(x := new()),R(t),Gtnew ∪ Gtassgn pt) �α;ζ(t)�ζ(t)

(t.(x := new()),R(t),Gt
new ∪G

t
assgn pt)

so we omit them in this paper.

Rely-Guarantee reasoning about the GC code. The program
logic is designed by extending the traditional R-G Logic with
rules for the GC-specific commands (e.g., x := get root(y)) and
adapting some heap manipulation rules to our low-level machine
model (e.g., free(x) just sets the object’s color to BLUE). We give
the inference rules and the soundness proofs in Appendix E.3.

We describe states using separation logic assertions, as shown
below:

p, q ::= B | t.ownp(x) | t.ownnp(x) | E1.id �→ E2 | p ∗ q | . . .
Following Parkinson et al. [23], we treat program variables as re-
source and use t.ownp(x) and t.ownnp(x) for the thread t’s owner-
ships of pointers and non-pointers respectively. Also in B we can
use t.x to denote the thread t’s local variable x. We omit the thread
identifiers if these predicates hold for the current thread. We use
E1.id �→ E2 to specify a single-object single-field heap with E2

stored in the field id of the object E1. The separating conjunction
p ∗ q means p and q hold on disjoint states. We use E1.id ↪→ E2

for E1.id �→ E2 ∗ true and�x∈S .p(x) for iterated separating con-
junction over the set S.

We first give the precondition and the guarantee of the GC. The
GC starts its executions from a low-level well-formed state, i.e.,
pgc � wfstate. Just corresponding to the high-level wfstate defini-
tion, the low-level wfstate predicate says that the heap contains M
objects and none of the reachable objects are BLUE. We define the
low-level wfstate predicate in Figure 19, It’s easy to see that any
low-level initial state is well-formed. We define Ggc as follows:

Ggc � {((π � {tgc � s}, h), (π � {tgc � s′}, h′))
| ∀n. reachable(n)(π, h)

=⇒ �h(n)� = �h′(n)�
∧ h(n).color �= BLUE ∧ h′(n).color �= BLUE} .

The GC guarantees not modifying the mutator stores. For any
mutator-reachable object, the GC does not update its fields coming
from the high-level mutator, nor does it reclaim the object. Here � �
lifts a low-level object to a new one that contains mutator data only.

�o� � {pt1 � o(pt1), . . . , ptm � o(ptm), data� o(data)}

As shown in Figure 12, every collection cycle begins from a
well-formed state with an empty mark stack in the GC’s local store.
Then the GC does the followings things in order:

1. Concurrent Initializing: The GC scans the heap and clears the
dirty card and the mark bit of each object. At the same time, the
mutators can dirty the cards and allocate black objects. Thus af-
ter initialization, a white reachable object, if it cannot be traced
from a root object in a white path, must be reachable from a
newly-allocated object (i.e., a black object) whose pointer field
was updated and dirty bit was set to 1. This property is denoted
by reach inv.

2. Concurrent mark-phase: The GC reads the local store of each
mutator to get the roots and then performs a depth-first traversal
of the heap using the mark stack mstk. After tracing, we can
ensure that if a white object is only reachable from a black
object, then that black object must be dirty whose pointer field
was updated by the mutators. In other words, reach inv still
holds after this phase.

3. Concurrent card-cleaning: The GC goes through the heap, and
for every dirty object, first clear its dirty card and if it is black
but points to an object which has not been marked, then the
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T(E) �
{

0 if E = nil
E otherwise

T(B) �
{

T(E1) = T(E2) if B = (E1 = E2)
B otherwise

T(c) �
{

update(x.id,T(E)) if c = (x.id := E) ∧ id ∈ {pt1, . . . , ptm}
c otherwise

T(C) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

skip if C = skip
T(c) if C = c
T(C′);T(C′′) if C = C′; ;C′′
if (T(B)) {T(C′)} else {T(C′′)} if C = if B then C′ else C′′
while (T(B)) {T(C′)} if C = while B do C′

T(W) � tgc.Cgc ‖ t1.T(C1)‖ . . .‖ tn.T(Cn) if W = tgc.AbsGC�t1.C1�. . .�tn.Cn

(a) T on Programs

T(S)(x) �

⎧⎪⎨
⎪⎩

nnp if S(x) = n
np if S(x) = l ∧ Loc2Int(l) = n
0p if x = aux
⊥ if x �∈ dom(S) ∧ x �= aux

T(H)(i) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{pt1 � n1, . . . , ptm � nm, data� n, color� WHITE, dirty� 0}
if ∃l. l ∈ dom(H) ∧ Loc2Int(l) = i ∧ 1 ≤ i ≤ M
∧ H(l) = {pt1 � l1, . . . , ptm � lm, data� n}
∧ Loc2Int(l1) = n1 ∧ . . . ∧ Loc2Int(lm) = nm

{pt1 � 0, . . . , ptm � 0, data� 0, color� BLUE, dirty� 0}
if ∃l. l �∈ dom(H) ∧ Loc2Int(l) = i ∧ 1 ≤ i ≤ M

T(Σ) �
{

({t� T(S) | (t� S) ∈ Π} � {tgc � sgc init},T(H)) if Σ = (Π,H) ∧ wfstate(Σ)
⊥ otherwise

(b) T on Initial States

Figure 16. The Transformation T for Boehm et al. GC

store map(s, S) � ∀x �= aux. (∀n. s(x) = nnp ⇐⇒ S(x) = n) ∧ (∀n. s(x) = np ⇐⇒ ∃l. Loc2Int(l) = n ∧ S(x) = l)

heap map(h,H) � ∀i, l, n, n1, . . . , nm. 1 ≤ i ≤ M ∧ Loc2Int(l) = i
=⇒ (h(i)(color) �= BLUE ∧ h(i) = {pt1 � n1, . . . , ptm � nm, data� n, color� , dirty� }

⇐⇒ ∃l1, . . . , lm. Loc2Int(l1) = n1 ∧ . . . ∧ Loc2Int(lm) = nm ∧ H(l) = {pt1 � l1, . . . , ptm � lm, data� n})
∧ (h(i) = {pt1 � n1, . . . , ptm � nm, data� , color� BLUE, dirty� } ⇐⇒ l �∈ dom(H))

α � {((π � {tgc � }, h), (Π,H)) | ∀t ∈ dom(Π). store map(π(t),Π(t)) ∧ heap map(h,H) ∧ wfstate(Π,H)}

Figure 17. The α Relation for Boehm et al. GC

unmarked object and its descendants are traced using the mark
stack. Since any mutator updates during this phase still dirty the
corresponding object, we can conclude reach inv is maintained
at the end of this phase.

4. Stop-the-world card-cleaning:

(a) Root-scanning: Due to possible updates during the previ-
ous concurrent phases, the pointer variables in mutators’
local stores must be re-scanned as if they were dirty. The
GC marks those white root objects and pushes them onto
the mark stack for future tracing. Thus after root-scanning,
reach rtnw stk(X) holds, saying that all white reachable
objects can be traced either from an object on the stack X
or a black dirty object. Moreover, all the objects on the stack
are black (stk black(X)).

(b) Card-cleaning: The GC performs the same operations as in
the concurrent card-cleaning phase. But this time the muta-
tors cannot update the heap. Thus at the end, the mark stack

is empty and all the reachable objects are black (denoted by
reach black).

5. Concurrent sweep-phase: The GC scans the heap and frees
white objects. No matter how the mutators interleaves with the
GC, all the white objects are remained unreachable. Thus the
reclamation is safe that guarantees Ggc. After sweep, the state is
still well-formed.

The predicates reach inv, reach rtnw stk(X) and reach black
are defined in Figure 19, and the complete formal proofs are given
in Appendix E.4.

8. Related Work and Conclusion
There is a large body of work on refinements and verification of
program transformations. Here we only focus on the work most
closely related to the typical applications discussed in this paper.
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Gt
assgn int � {((Π � {t� St},H), (Π � {t� S′

t},H))

| ∃x, n, n′. St(x) = n ∧ S′
t = St{x� n′}}

Gt
assgn pt � {((Π � {t� St},H), (Π � {t� S′

t},H))
| ∃x, l, l′. St(x) = l ∧ S′

t = St{x� l′} ∧ (l′ = nil ∨ (∃x′. St(x′) = l′) ∨ (∃y, l′′, id. St(y) = l′′ ∧ H(l′′)(id) = l′))}
Gt

write data � {((Π � {t� St},H), (Π � {t� St},H′))
| ∃x, l,O. St(x) = l ∧ H(l) = O ∧ H′ = H{l � O{data� }}}

Gt
write pt � {((Π � {t� St},H), (Π � {t� St},H′))

| ∃x, l, id,O, l′, l′′. St(x) = l ∧ H(l) = O ∧ O(id) = l′ ∧ H′ = H{l � O{id� l′′}} ∧ (l′′ = nil ∨ ∃x′. St(x′) = l′′)}
Gt

new � {((Π � {t� St},H), (Π � {t� S′
t},H′))

| ∃x, l, l′. St(x) = l ∧ S′
t = St{x� l′} ∧ l′ �∈ dom(H) ∧ H′ = H � {l′ � {pt1 � nil, . . . , ptm � nil, data� 0}}}

G(t) � Gt
assgn int ∪ Gt

assgn pt ∪ Gt
write data ∪ Gt

write pt ∪ Gt
new

(a) High-Level Guarantees

Gt
assgn int � {((π � {t� st}, h), (π � {t� s′t}, h))

| st(aux) = 0p ∧ ∃x, n, n′. st(x) = nnp ∧ s′t = st{x� n′np}}
Gt

assgn pt � {((π � {t� st}, h), (π � {t� s′t}, h))
| st(aux) = 0p ∧ ∃x, n, n′. st(x) = np ∧ s′t = st{x� n′p}

∧ (n′ = 0 ∨ (∃x′. st(x′) = n′p) ∨ (∃y, n′′, id. id ∈ {pt1, . . . , ptm} ∧ st(y) = n′′p ∧ h(n′′)(id) = n′))}
Gt

write data � {((π � {t� st}, h), (π � {t� st}, h′))
| st(aux) = 0p ∧ ∃x, n, o. st(x) = np ∧ h(n) = o ∧ h′ = h{l � o{data� }}}

Gt
write pt � {((π � {t� st}, h), (π � {t� s′t}, h′))

| st(aux) = 0p ∧ ∃x, n, id, o, n′′. id ∈ {pt1, . . . , ptm} ∧ st(x) = np ∧ h(n) = o ∧ h′ = h{n� o{id� n′′}}
∧ (n′′ = 0 ∨ ∃x′. st(x′) = n′′p) ∧ s′t = st{aux� np}}

Gt
set dirty � {((π � {t� st}, h), (π � {t� s′t}, h′))

| st(aux) = np ∧ ∃n, o. h(n) = o ∧ h′ = h{n� o{dirty� 1}} ∧ s′t = st{aux� 0p}}
Gt

new � {((π � {t� st}, h), (π � {t� s′t}, h′))
| st(aux) = 0p ∧ ∃x, n, n′. st(x) = np ∧ s′t = st{x� n′p} ∧ h(n′)(color) = BLUE

∧ h′ = h{n′ � {pt1 � 0, . . . , ptm � 0, data� 0, color� BLACK, dirty� 0}}}

G(t) � Gt
assgn int ∪ Gt

assgn pt ∪ Gt
write data ∪ Gt

write pt ∪ Gt
set dirty ∪ Gt

new

(b) Low-Level Guarantees

Figure 18. Guarantees of Mutator Instructions

obj(x) � ∃n1, . . . , nm. (x.pt1 �→ n1 ∗ . . . ∗ x.ptm �→ nm ∗ x.data �→ ∗ x.color �→ ∗ x.dirty �→ )
∧ 0 ≤ n1 ≤ M ∧ . . . ∧ 0 ≤ nm ≤ M

wfstate � �x∈[1..M ].obj(x) ∗ true ∧ (∀x. reachable(x) =⇒ not blue(x))

rt wp(x) � ∃t ∈ [1..N ]. ∃S, y. root(t, S) ∧ y ∈ S ∧ white(y) ∧ white path(y, x)
dt bwp(x, y) � black(x) ∧ dirty(x) ∧ white path(x, y)
stk bwp(x, y,A) � black(x) ∧ instk(x,A) ∧ white path(x, y)
reach inv � ∀x. reachable(x) ∧ white(x) =⇒ rt wp(x) ∨ ∃x′.dt bwp(x′, x)
reach rtnw stk(A) � ∀x. reachable(x) ∧ white(x) =⇒ ∃x′.dt bwp(x′, x) ∨ ∃x′.stk bwp(x′, x, A)

reach black � ∀x. reachable(x) =⇒ black(x)

Figure 19. Boehm et al. GC Predicates

Verifying compilation and optimizations of concurrent programs.
Compiler verification for concurrent programming languages can
date back to work by Wand [31] and Gladstein et al. [14], which
is about functional languages using message-passing mechanisms.
Recently, Lochbihler [21] presents a verified compiler for Java
threads and prove semantics preservation by a weak bisimulation.
He views every heap update as an observable move, thus does not
allow the target and the source to have different granularities of
atomic updates. To achieve parallel compositionality, he requires
the relation to be preserved by any transitions of shared states,
i.e., the environments are assumed arbitrary. As we explained in
Section 2.2, this is a too strong requirement in general for many
transformations, including the examples in this paper.

Burckhardt et al. [9] present a proof method for verifying con-
current program transformations on relaxed memory models. The
method relies on a compositional trace-based denotational seman-
tics, where the values of shared variables are always considered
arbitrary at any program point. In other words, they also assume
arbitrary environments.

Following Leroy’s CompCert project [19], Ševčı́k et al. [25]
verify compilation from a C-like concurrent language to x86 by
simulations. They focus on correctness of a particular compiler, and
there are two phases in their compiler whose proofs are not compo-
sitional. Here we provide a general, compiler-independent, compo-
sitional proof technique to verify concurrent transformations.

We apply RGSim to justify concurrent optimizations, following
Benton [3] who presents a declarative set of rules for sequential
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optimizations. Also the proof rules of RGSim for sequential com-
positions, conditional statements and loops coincide with those in
relational Hoare logic [3] and relational separation logic [32].

Proving linearizability or atomicity of concurrent objects. Fil-
ipović et al. [13] show linearizability can be characterized in terms
of an observational refinement, where the latter is defined similarly
to our Correct(T). There is no proof method given to verify the
linearizability of fine-grained object implementations.

Turon and Wand [27] propose a refinement-based proof method
to verify concurrent objects. They first propose a simple refinement
based on Brookes’ fully abstract trace semantics [8], which is com-
positional but cannot handle complex algorithms (as discussed in
Section 2.2). Their fenced refinement then uses rely conditions to
filter out illegal environment transitions. The basic idea is similar to
ours, and the refinement can also be used to verify Treiber’s stack
algorithm. However, it is “not a congruence for parallel composi-
tion”. In their settings, both the concrete (fine-grained) and the ab-
stract (atomic) versions of object operations need to be expressed
in the same language. They also require that the fine-grained im-
plementation has only one update action over the shared state to
correspond to the high-level atomic operation. These requirements
and the lack of parallel compositionality limit the applicability of
their method. It is unclear if the method can be used for general
verification of transformations, such as concurrent GCs.

Elmas et al. [12] prove linearizability by incrementally rewrit-
ing the fine-grained implementation to the atomic abstract speci-
fication. Their behavioral simulation used to characterize lineariz-
ability is an event-trace subset relation with requirements on the
orders of method invocations and returns. Their rules heavily rely
on movers (i.e., operations that can commute over any operation of
other threads) and always rewrite programs to instructions, thus are
designed specifically for atomicity verification.

In his thesis [28], Vafeiadis proves linearizability of concurrent
objects in RGSep logic by introducing abstract objects and abstract
atomic operations as auxiliary variables and code. The refinement
between the concrete implementation and the abstract operation is
implicitly embodied in the unary verification process, but is not
spelled out formally in the meta-theory (e.g., the soundness).

Verifying concurrent GCs. Vechev et al. [30] define transforma-
tions to generate concurrent GCs from an abstract collector. After-
wards, Pavlovic et al. [24] present refinements to derive concrete
concurrent GCs from specifications. These methods focus on de-
scribing the behaviors of variants (or instantiations) of a correct ab-
stract collector (or a specification) in a single framework, assuming
all the mutator operations are atomic. By comparison, we provide
a general correctness notion and a proof method for verifying con-
current GCs and the interactions with mutators (where the barriers
could be fine-grained). Furthermore, the correctness of their trans-
formations or refinements is expressed in a GC-oriented way (e.g.,
the target GC should mark no less objects than the source), which
cannot be used to justify other transformations.

Kapoor et al. [18] verify Dijkstra’s GC using concurrent sepa-
ration logic. To validate the GC specifications, they also verify a
representative mutator in the same system. In contrast, we reduce
the problem of verifying a concurrent GC to verifying a transfor-
mation, ensuring semantics preservation for all mutators. Our GC
verification framework is inspired by McCreight et al. [22], who
propose a framework for separate verification of stop-the-world and
incremental GCs and their mutators, but their framework does not
handle concurrency.

Conclusion and Future Work. We propose RGSim to verify con-
current program transformations. By describing explicitly the inter-

ference with environments, RGSim is compositional, and can sup-
port many widely-used transformations. We have applied RGSim
to reason about optimizations, prove atomicity of fine-grained con-
current algorithms and verify concurrent garbage collectors. In the
future, we would like to further test its applicability with more ap-
plications, such as verifying STM implementations and compilers.
It is also interesting to explore the possibility of building tools to
automate the verification process.
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A. Soundness of RGSim (Theorem 5)
We first prove the following useful lemmas:

Lemma 9. For all k ≥ 0 and m ≥ 0, for all C, C′, σ and σ′, if
(C, σ) −→k (C′, σ′), then ETrSetm(C′, σ′) ⊆ ETrSetk+m(C, σ).

Proof:. By induction over k.
Base Case: k = 0, then C′ = C and σ′ = σ, trivial.
Inductive Step: k = n+ 1.
By unfolding (C, σ) −→ n+1 (C′, σ′), we know there exists C′′

and σ′′ such that
(C, σ) −→ (C′′, σ′′) (A.1)

and
(C′′, σ′′) −→n (C′, σ′). (A.2)

From (A.1) and Definition 1, we know

ETrSetn+m(C′′, σ′′) ⊆ ETrSetn+m+1(C, σ). (A.3)

From (A.2) and the induction hypothesis, we know

ETrSetm(C′, σ′) ⊆ ETrSetn+m(C′′, σ′′). (A.4)

From (A.3) and (A.4), we get the conclusion. �

Lemma 10. For all k ≥ 0 and m ≥ 0, for all E , for all C, C′, σ
and σ′, if (C, σ) e−→ k (C′, σ′) and E ∈ ETrSetm(C′, σ′), then
e ::E ∈ ETrSetk+m(C, σ).

Proof:. By induction over k.
Base Case: k = 0, trivial.
Inductive Step: k = n+ 1.
By unfolding (C, σ)

e−→ n+1 (C′, σ′), one of the following two
cases holds:

1. there exists C′′ and σ′′ such that

(C, σ) −→ (C′′, σ′′) (A.1)

and
(C′′, σ′′) e−→n (C′, σ′). (A.2)

From (A.1) and Definition 1, we know

ETrSetn+m(C′′, σ′′) ⊆ ETrSetn+m+1(C, σ). (A.3)

From (A.2) and the induction hypothesis, we know

e ::E ∈ ETrSetn+m(C′′, σ′′). (A.4)

From (A.3) and (A.4), we get the conclusion.

2. there exists C′′ and σ′′ such that

(C, σ)
e−→ (C′′, σ′′) (A.5)

and
(C′′, σ′′) −→n (C′, σ′). (A.6)

From (A.6) and Lemma 9, we know

ETrSetm(C′, σ′) ⊆ ETrSetn+m(C′′, σ′′). (A.7)

Thus
E ∈ ETrSetn+m(C′′, σ′′). (A.8)

From (A.5), (A.8) and Definition 1, we know e :: E ∈
ETrSetn+m+1(C, σ).

In both cases, we can get the conclusion. �

Lemma 11. For all k ≥ 0, for all C, C, σ, Σ, R, R, G, G, α
and γ, if (C, σ,R,G) �α;γ (C,Σ,R,G), then ETrSetk(C, σ) ⊆
ETrSet(C,Σ).

Proof:. By induction over k.
Base Case: k = 0. We know {ε} ⊆ ETrSet(C,Σ) always holds.
Inductive Step: k = n+ 1.
For all E ∈ ETrSetn+1(C, σ), by Definition 1, we have four cases:

1. If C = skip, then E = done. By unfolding (skip, σ,R,G) �α;γ

(C,Σ,R,G), we know there exists Σ′ such that
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(C,Σ) −→∗ (skip,Σ′).

From Lemma 9 and E ∈ ETrSet1(skip,Σ′), we know

E ∈ ETrSet(C,Σ). (A.1)

2. If (C, σ) −→ (C′, σ′) and E ∈ ETrSetn(C′, σ′), then by
unfolding (C, σ,R,G) �α;γ (C,Σ,R,G), we know there exist
C

′ and Σ′ such that

(C,Σ) −→∗ (C′,Σ′) (A.2)

and
(C′, σ′,R,G) �α;γ (C′,Σ′,R,G). (A.3)

From (A.3) and the induction hypothesis, we know
ETrSetn(C′, σ′) ⊆ ETrSet(C′,Σ′).
Thus

E ∈ ETrSet(C′,Σ′). (A.4)
By (A.2), Lemma 9 and (A.4), we know

E ∈ ETrSet(C,Σ). (A.5)

3. If (C, σ) e−→ (C′, σ′), E = e :: E ′ and E ′ ∈ ETrSetn(C′, σ′),
then by unfolding (C, σ,R,G) �α;γ (C,Σ,R,G), we know
there exist C′ and Σ′ such that

(C,Σ)
e−→∗ (C′,Σ′) (A.6)

and
(C′, σ′,R,G) �α;γ (C′,Σ′,R,G). (A.7)

From (A.7) and the induction hypothesis, we know
ETrSetn(C′, σ′) ⊆ ETrSet(C′,Σ′).
Thus

E ′ ∈ ETrSet(C′,Σ′). (A.8)
By (A.6), Lemma 10 and (A.8), we know

E ∈ ETrSet(C,Σ). (A.9)

4. If (C, σ) −→ abort and E = abort, then by unfolding
(C, σ,R,G) �α;γ (C,Σ,R,G), we know (C,Σ) −→∗ abort.
Then we can prove

E ∈ ETrSet(C,Σ). (A.10)

From (A.1), (A.5), (A.9) and (A.10), we get the conclusion. �
We get Theorem 5 immediately from Lemma 11.

B. Soundness of Compositionality Rules
B.1 Soundness of the SEQ Rule

Lemma 12. For all C1, C2, C1 and C2, for all σ and Σ, if

1. (C1, σ,R,G) �α;γ (C1,Σ,R,G); and

2. for all σ2 and Σ2, if (σ2,Σ2) ∈ γ, then (C2, σ2,R,G) �α;η

(C2,Σ2,R,G);

then

(C1;C2, σ,R,G) �α;η (C1; ;C2,Σ,R,G).

Proof:. By co-induction.
Let

S = {((C1;C2, σ), (C1; ;C2,Σ)) | the premises hold}
∪ {((C2, σ2), (C2,Σ2)) | (σ2,Σ2) ∈ γ} .

We prove S ⊆ F (S) where F is defined by the simulation.
From the 2nd premise, we know that if (σ2,Σ2) ∈ γ, then
((C2, σ2), (C2,Σ2)) satisfies the simulation.
For all ((C1;C2, σ), (C1; ;C2,Σ)) ∈ S, we know (σ,Σ) ∈ α.

1. If (C1;C2, σ) −→ (C′, σ′), then according to the operational
semantics, we have two possible cases:

• C1 �= skip. Thus C′ = C′
1;C2 and

(C1, σ) −→ (C′
1, σ

′).

From the 1st premise, we know (σ, σ′) ∈ G and there exist
C

′
1 and Σ′ such that the followings hold:

(C1,Σ) −→∗ (C′
1,Σ

′), (Σ,Σ′) ∈ G
∗

(C′
1, σ

′,R,G) �α;γ (C′
1,Σ

′,R,G)

Thus we know ((C′
1;C2, σ

′), (C′
1; ;C2,Σ

′)) ∈ S.

• C1 = skip. Thus C′ = C2 and σ′ = σ.
Since G contains identity transitions, we know (σ, σ′) ∈ G.
From the 1st premise, we know there exists Σ′ such that

(C1,Σ) −→∗ (skip,Σ′), (Σ,Σ′) ∈ G
∗, (σ,Σ′) ∈ γ

Thus (C1; ;C2,Σ) −→∗ (C2,Σ
′) and

((C2, σ), (C2,Σ
′)) ∈ S.

2. If (C1;C2, σ)
e−→ (C′, σ′), the proof is similar to the previous

case.

3. If (σ, σ′) ∈ R, (Σ,Σ′) ∈ R
∗ and (σ′,Σ′) ∈ α, then from the

1st premise, we have

(C1, σ
′,R,G) �α;γ (C1,Σ

′,R,G).

Thus ((C1;C2, σ
′), (C1; ;C2,Σ

′)) ∈ S.

4. C1;C2 cannot be skip, so this case is vacantly true.

5. If (C1;C2, σ) −→ abort, then (C1; ;C2,Σ) −→ ∗ abort is
immediate from the 1st premise.

Then we have ((C1;C2, σ), (C1; ;C2,Σ)) ∈ F (S). Thus (C1;C2, σ)
and (C1; ;C2,Σ) satisfy the largest simulation RGSim. �

Then we can conclude soundness of the SEQ rule.

B.2 Soundness of the IF Rule

Lemma 13. For all C1, C2, C1 and C2, for all σ and Σ, if

1. for all σ1 and Σ1, if (σ1,Σ1) ∈ ζ1 = (ζ ∩ (B∧∧B)),
then (C1, σ1,R,G) �α;γ (C1,Σ1,R,G);

2. for all σ2 and Σ2, if (σ2,Σ2) ∈ ζ2 = (ζ ∩ (¬B∧∧¬B)),
then (C2, σ2,R,G) �α;γ (C2,Σ2,R,G);

3. ζ ⊆ (B⇔⇔B); and

4. (σ,Σ) ∈ ζ ⊆ α,

then
(if (B) C1 else C2, σ,R,G) �α;γ

(if B then C1 else C2,Σ,R,G)

Proof:. By co-induction.
Let

S = {((if (B) C1 else C2, σ), (if B then C1 else C2,Σ))
| the premises hold}
∪ {((C1, σ1), (C1,Σ1)) | (σ1,Σ1) ∈ ζ1}
∪ {((C2, σ2), (C2,Σ2)) | (σ2,Σ2) ∈ ζ2} .

We prove S ⊆ F (S) where F is defined by the simulation.
For all ((if (B) C1 else C2, σ), (if B then C1 else C2,Σ)) ∈ S,

1. If (if (B) C1 else C2, σ) −→ (C′, σ′), then according to the
operational semantics, we have two possible cases:
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• B σ = true. Thus C′ = C1 and σ′ = σ.
Since G contains identity transitions, we know (σ, σ′) ∈ G.
From ζ ⊆ (B⇔⇔B), we know B Σ = true. Thus

(if B then C1 else C2,Σ) −→ (C1,Σ), (Σ,Σ) ∈ G
∗.

Since (σ,Σ) ∈ ζ1, we know ((C1, σ), (C1,Σ)) ∈ S.

• B σ = false. The proof is similar to the previous case.

2. The case for (if (B) C1 else C2, σ)
e−→ (C′, σ′) is vacantly

true.

3. If (σ, σ′) ∈ R, (Σ,Σ′) ∈ R
∗ and (σ′,Σ′) ∈ α,

then from Sta(ζ, 〈R,R∗〉α), we know (σ′,Σ′) ∈ ζ. Thus
((if (B) C1 else C2, σ

′), (if B then C1 else C2,Σ
′)) ∈ S.

4. (if (B) C1 else C2) is not skip, so this case is vacantly true.

5. If (if (B) C1 else C2, σ) −→ abort, then B σ =⊥.
Since ζ ⊆ (B⇔⇔B) and (σ,Σ) ∈ ζ, we know B Σ =⊥.
Thus (if B then C1 else C2, σ) −→ abort.

Then we have (if (B) C1 else C2, σ), (if B then C1 else C2,Σ)) ∈
F (S). Thus (if (B) C1 else C2, σ) and (if B then C1 else C2,Σ)
satisfy the largest simulation RGSim. �

Then we can conclude soundness of the IF rule.

B.3 Soundness of the WHILE Rule

Lemma 14. For all C and C, for all σ and Σ, if

1. for all σ1 and Σ1, if (σ1,Σ1) ∈ γ1 = (γ ∩ (B∧∧B)),
then (C, σ1,R,G) �α;γ (C,Σ1,R,G);

2. γ ⊆ (B⇔⇔B);

3. γ2 = (γ ∩ (¬B∧∧¬B)); and

4. (σ,Σ) ∈ γ,

then

(while (B) C, σ,R,G) �α;γ2
(while B do C,Σ,R,G).

Proof:. By co-induction.
Let

S = {((while (B) C, σ), (while B do C,Σ))
| the premises hold}
∪ {((C;while (B) C, σ1), (C; ;while B do C,Σ1))
| (σ1,Σ1) ∈ γ1}
∪ {((skip, σ2), (skip,Σ2)) | (σ2,Σ2) ∈ γ2} .

We prove S ⊆ F (S) where F is defined by the simulation.
From Lemma 12, we can get that if for all (σ,Σ) ∈ γ we have
((while (B) C, σ), (while B do C,Σ)) satisfies the simulation,
then for all (σ1,Σ1) ∈ γ1,

((C;while (B) C, σ1), (C; ;while B do C,Σ1))

satisfies the simulation.
Since Sta(γ2, 〈R,R∗〉α), we can prove that if (σ2,Σ2) ∈ γ2, then

(skip, σ2,R,G) �α;γ2
(skip,Σ2,R,G)

That is, ((skip, σ2), (skip,Σ2)) satisfies the simulation.
For all ((while (B) C, σ), (while B do C,Σ)) ∈ S, since γ ⊆ α,
we know (σ,Σ) ∈ α.

1. If (while (B) C, σ) −→ (C′, σ′), then according to the opera-
tional semantics, we have two possible cases:

• B σ = true. Thus C′ = C;while (B) C and σ′ = σ.
Since G contains identity transitions, we know (σ, σ′) ∈ G.
From ζ ⊆ (B⇔⇔B), we know B Σ = true. Thus

(while B do C,Σ) −→ (C; ;while B do C,Σ)

and (Σ,Σ) ∈ G
∗. Since (σ,Σ) ∈ γ1, we know

((C;while (B) C, σ1), (C; ;while B do C,Σ1)) ∈ S.

• B σ = false. Thus C′ = skip and σ′ = σ.
Since G contains identity transitions, we know (σ, σ′) ∈ G.
From ζ ⊆ (B⇔⇔B), we know B Σ = false. Thus

(while B do C,Σ) −→ (skip,Σ), (Σ,Σ) ∈ G
∗.

Since (σ,Σ) ∈ γ2, we know ((skip, σ), (skip,Σ)) ∈ S.

2. The case for (while (B) C, σ)
e−→ (C′, σ′) is vacantly true.

3. If (σ, σ′) ∈ R, (Σ,Σ′) ∈ R
∗ and (σ′,Σ′) ∈ α,

then from Sta(γ, 〈R,R∗〉α), we know (σ′,Σ′) ∈ γ.
Thus ((while (B) C, σ′), (while B do C,Σ′)) ∈ S.

4. (while (B) C) is not skip, so this case is vacantly true.

5. If (while (B) C, σ) −→ abort, then B σ =⊥.
Since ζ ⊆ (B⇔⇔B) and (σ,Σ) ∈ ζ, we know B Σ =⊥.
Thus (while B do C, σ) −→ abort.

Then we have ((while (B) C, σ), (while B do C,Σ)) ∈ F (S).
Thus (while (B) C, σ) and (while B do C,Σ) satisfy the largest
simulation RGSim. �

Then we can conclude soundness of the WHILE rule.

B.4 Soundness of the PAR Rule

Lemma 15. For all C1, C2, C1, C2, σ and Σ, if

1. (C1, σ,R1,G1) �α;γ1
(C1,Σ,R1,G1);

2. (C2, σ,R2,G2) �α;γ2
(C2,Σ,R2,G2); and

3. G1 ⊆ R2; G2 ⊆ R1; G1 ⊆ R2; G2 ⊆ R1,

then
(C1‖C2, σ,R1 ∩R2,G1 ∪ G2) �α;(γ1∩γ2)

(C1�C2,Σ,R1 ∩ R2,G1 ∪G2)

Proof:. By co-induction.
Let

S = {((C1‖C2, σ), (C1�C2,Σ)) | the premises hold}
We prove S ⊆ F (S) where F is defined by the simulation.
For all ((C1‖C2, σ), (C1�C2,Σ)) ∈ S,

1. If (C1‖C2, σ) −→ (C′, σ′), then according to the operational
semantics, we have three possible cases:

• (C1, σ) −→ (C′
1, σ

′) and C′ = C′
1‖C2.

From the 1st premise, we know

(σ, σ′) ∈ G1 (B.1)

and there exist C′
1 and Σ′ such that the followings hold:

(C1,Σ) −→∗ (C′
1,Σ

′), (Σ,Σ′) ∈ G
∗
1 (B.2)

(C′
1, σ

′,R1,G1) �α;γ1
(C′

1,Σ
′,R1,G1) (B.3)

From (B.1), we know (σ, σ′) ∈ G1 ∪ G2.
From (B.2), we know (C1�C2,Σ) −→∗ (C′

1�C2,Σ
′) and

(Σ,Σ′) ∈ (G1 ∪G2)
∗.

Since (σ, σ′) ∈ G1 ⊆ R2, (Σ,Σ′) ∈ G
∗
1 ⊆ R

∗
2 and

(σ′,Σ′) ∈ α, from the 2nd premise, we know

(C′
2, σ

′,R2,G2) �α;γ2
(C′

2,Σ
′,R2,G2) (B.4)

From (B.3) and (B.4), we know
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((C′
1‖C2, σ

′), (C′
1�C2,Σ

′)) ∈ S.

• (C2, σ) −→ (C′
2, σ

′) and C′ = C1‖C′
2.

Similar to the previous case.

• C1 = skip, C2 = skip and (skip‖skip, σ) −→ (skip, σ).
From the 1st premise, we know

(C1,Σ) −→∗ (skip,Σ′), (Σ,Σ′) ∈ G
∗
1 (B.5)

(σ,Σ′) ∈ γ1 (B.6)
From (B.5), we know

(C1�C2,Σ) −→∗ (skip�C2,Σ
′), (Σ,Σ′) ∈ (G1 ∪G2)

∗

(B.7)
and (Σ,Σ′) ∈ R

∗
2. From (B.6), we know (σ,Σ′) ∈ α. Then

from the 2nd premise, we know

(skip, σ,R2,G2) �α;γ2
(C2,Σ

′,R2,G2) (B.8)

Thus (C2,Σ
′) −→∗ (skip,Σ′′), (Σ′,Σ′′) ∈ G

∗
2 and

(σ,Σ′′) ∈ γ2 (B.9)

Then from (B.7), we know (C1�C2,Σ) −→ ∗ (skip,Σ′′)
and (Σ,Σ′′) ∈ (G1 ∪G2)

∗.
On the other hand, (Σ′,Σ′′) ∈ G

∗
2 ⊆ R

∗
1. From (B.6) and

Sta(γ1, 〈R1,R
∗
1〉α), we know

(σ,Σ′′) ∈ γ1 (B.10)

From (B.9) and (B.10), we know (σ,Σ′′) ∈ γ1 ∩ γ2.

2. If (C1 ‖ C2, σ)
e−→ (C′, σ′), the proof is similar to the

previous case.

3. If (σ, σ′) ∈ R1 ∩ R2, (Σ,Σ′) ∈ (R1 ∩ R2)
∗ ⊆ R

∗
1 ∩ R

∗
2 and

(σ′,Σ′) ∈ α, then

(C1, σ
′,R1,G1) �α;γ1

(C1,Σ
′,R1,G1)

(C2, σ
′,R2,G2) �α;γ2

(C2,Σ
′,R2,G2)

Thus ((C1‖C2, σ
′), (C1�C2,Σ

′)) ∈ S.

4. C1‖C2 �= skip. This case is vacantly true.

5. If (C1 ‖ C2, σ) −→ abort, then (C1�C2,Σ) −→ ∗ abort is
immediate from the premises.

Then we have ((C1 ‖C2, σ), (C1�C2,Σ)) ∈ F (S). Thus (C1 ‖
C2, σ) and (C1�C2,Σ) satisfy the largest simulation RGSim. �

Thus we can conclude soundness of the PAR rule.

B.5 Soundness of the STREN-α Rule

Lemma 16. For all C, C, σ and Σ, if

1. (C, σ,R,G) �α;γ (C,Σ,R,G);

2. (σ,Σ) ∈ α′,

3. α′ ⊆ α; and

4. Sta(α′, 〈G,G∗〉α),
then (C, σ,R,G) �α′;γ (C,Σ,R,G).

Proof:. By co-induction.
Let S = {((C, σ), (C,Σ)) | the premises hold}. We prove S ⊆
F (S) where F is defined by the simulation.
For all ((C, σ), (C,Σ)) ∈ S,

1. If (C, σ) −→ (C′, σ′), then from the 1st premise, we know
(σ, σ′) ∈ G and there exist C′ and Σ′ such that the followings
hold:

(C,Σ) −→∗ (C′,Σ′), (Σ,Σ′) ∈ G
∗

(C′, σ′,R,G) �α;γ (C′,Σ′,R,G)

We know (σ′,Σ′) ∈ α. Then by applying the 4th premise, we
can get (σ′,Σ′) ∈ α′. Thus we know ((C′, σ′), (C′,Σ′)) ∈ S.

2. If (C, σ) e−→ (C′, σ′), the proof is similar to the previous case.

3. If (σ, σ′) ∈ R, (Σ,Σ′) ∈ R
∗ and (σ′,Σ′) ∈ α′, then we know

(σ′,Σ′) ∈ α. Using the 1st premise, we have

(C, σ′,R,G) �α;γ (C,Σ′,R,G).

Thus ((C, σ′), (C,Σ′)) ∈ S.

4. If C = skip, then from the 1st premise, we know there exists
Σ′ such that the followings hold:

(C,Σ) −→∗ (skip,Σ′), (Σ,Σ′) ∈ G
∗, (σ,Σ′) ∈ γ

5. If (C, σ) −→ abort, then (C,Σ) −→ ∗ abort is immediate
from the 1st premise.

Then we have ((C, σ), (C,Σ)) ∈ F (S). Thus (C, σ) and (C,Σ)
satisfy the largest simulation RGSim. �

Since ζ ⊆ α′, we can conclude soundness of the STREN-α rule.

B.6 Soundness of the WEAKEN-α Rule

Lemma 17. For all C, C, σ and Σ, if

1. (C, σ,R,G) �α;γ (C,Σ,R,G);

2. α ⊆ α′; and

3. Sta(α, 〈R,R∗〉α′),

then (C, σ,R,G) �α′;γ (C,Σ,R,G).

Proof:. By co-induction.
Let S = {((C, σ), (C,Σ)) | the premises hold}. We prove S ⊆
F (S) where F is defined by the simulation.
For all ((C, σ), (C,Σ)) ∈ S, we know (σ,Σ) ∈ α ⊆ α′.

1. If (C, σ) −→ (C′, σ′), then from the 1st premise, we know
(σ, σ′) ∈ G and there exist C′ and Σ′ such that the followings
hold:

(C,Σ) −→∗ (C′,Σ′), (Σ,Σ′) ∈ G
∗

(C′, σ′,R,G) �α;γ (C′,Σ′,R,G)

Thus we know ((C′, σ′), (C′,Σ′)) ∈ S.

2. If (C, σ) e−→ (C′, σ′), the proof is similar to the previous case.

3. If (σ, σ′) ∈ R, (Σ,Σ′) ∈ R
∗ and (σ′,Σ′) ∈ α′, then from the

3rd premise, we know (σ′,Σ′) ∈ α. Using the 1st premise, we
have

(C, σ′,R,G) �α;γ (C,Σ′,R,G).

Thus ((C, σ′), (C,Σ′)) ∈ S.

4. If C = skip, then from the 1st premise, we know there exists
Σ′ such that the followings hold:

(C,Σ) −→∗ (skip,Σ′), (Σ,Σ′) ∈ G
∗, (σ,Σ′) ∈ γ

5. If (C, σ) −→ abort, then (C,Σ) −→ ∗ abort is immediate
from the 1st premise.

Then we have ((C, σ), (C,Σ)) ∈ F (S). Thus (C, σ) and (C,Σ)
satisfy the largest simulation RGSim. �

Thus we can conclude soundness of the WEAKEN-α rule.

21 2011/11/5



B.7 Soundness of the FRAME Rule

Lemma 18. For all C, C, σ and Σ, if

1. (C, σ,R,G) �α;γ (C,Σ,R,G);

2. (σ,Σ) ∈ α � η,

3. η ⊆ β;

4. η # {γ, α};
5. Intuit({α, γ, β, η,R,R,R′,R′}); and

6. Sta(η, {〈G,G∗〉α, 〈R′,R′∗〉β}),
then (C, σ,R�R′,G � G′) �α�β;γ�η (C,Σ,R � R

′,G �G
′).

Proof:. By co-induction.
Let S = {((C, σ), (C,Σ)) | the premises hold}. We prove S ⊆
F (S) where F is defined by the simulation.
For all ((C, σ), (C,Σ)) ∈ S, from the 2nd and 3rd premises, we
know (σ,Σ) ∈ α � β.

1. If (C, σ) −→ (C′, σ′), then from the 1st premise, we know
(σ, σ′) ∈ G and there exist C′ and Σ′ such that the followings
hold:

(C,Σ) −→∗ (C′,Σ′), (Σ,Σ′) ∈ G
∗

(C′, σ′,R,G) �α;γ (C′,Σ′,R,G)

Since (φ, φ) ∈ Id ⊆ G′, we know

G ⊆ (G � G′).
Thus (σ, σ′) ∈ G � G′. Similarly, (Σ,Σ′) ∈ (G �G

′)∗.
Also we know (σ′,Σ′) ∈ α. From Intuit(η), we know

(σ,Σ) ∈ α � η ⊆ η.

From Sta(η, 〈G,G∗〉α), we know (σ′,Σ′) ∈ η. Since η # α,
we know

(σ′,Σ′) ∈ α � η.

Thus we know ((C′, σ′), (C′,Σ′)) ∈ S.

2. If (C, σ) e−→ (C′, σ′), the proof is similar to the previous case.

3. If (σ, σ′) ∈ R�R′, (Σ,Σ′) ∈ (R�R′)∗ and (σ′,Σ′) ∈ α�β,
then from Intuit({R,R, α}), we have

(σ, σ′) ∈ R, (Σ,Σ′) ∈ R
∗, (σ′,Σ′) ∈ α

Then from the 1st premise, we have

(C, σ′,R,G) �α;γ (C,Σ′,R,G).

From Intuit(η), we know (σ,Σ) ∈ α � η ⊆ η. On the other
hand, from Intuit({R′,R′, β}), we have

(σ, σ′) ∈ R′, (Σ,Σ′) ∈ R
′∗, (σ′,Σ′) ∈ β

From Sta(η, 〈R′,R′∗〉β), we know (σ′,Σ′) ∈ η. Since η # α,
we know

(σ′,Σ′) ∈ α � η.

Thus ((C, σ′), (C,Σ′)) ∈ S.

4. If C = skip, then from the 1st premise, we know there exists
Σ′ such that the followings hold:

(C,Σ) −→∗ (skip,Σ′), (Σ,Σ′) ∈ G
∗, (σ,Σ′) ∈ γ

We have (Σ,Σ′) ∈ (G �G
′)∗ and (σ,Σ′) ∈ α.

From Intuit(η), we know (σ,Σ) ∈ α � η ⊆ η.
From Sta(η, 〈G,G∗〉α), we know (σ,Σ′) ∈ η.
Since η # γ, we know (σ,Σ′) ∈ γ � η.

5. If (C, σ) −→ abort, then (C,Σ) −→ ∗ abort is immediate
from the 1st premise.

Then we have ((C, σ), (C,Σ)) ∈ F (S). Thus (C, σ) and (C,Σ)
satisfy the largest simulation RGSim. �

Since (ζ ∪ γ) ⊆ α and η ⊆ β, we have

(ζ � η) ⊆ (α � β), (γ � η) ⊆ (α � β), (ζ � η) ⊆ (α � η).

Then we can conclude soundness of the FRAME rule.

B.8 Soundness of the Optimization Rules

Here we only give the proof sketch of soundness of the dead-while,
the dead-code-elimination and the redundancy introduction rules.
Proofs of other rules are similar.

Lemma 19 (Dead While). For all σ1 and σ2, if

1. ζ = (ζ ∩ (true∧∧¬B));

2. Sta(ζ, 〈R,R′∗〉α);
3. (σ1, σ2) ∈ ζ ⊆ α,

then (skip, σ1,R, Id) �α;ζ (while (B){C}, σ2,R′, Id).

Proof:. By co-induction.
Since B σ2 = false, we know (while (B){C}, σ2) −→ (skip, σ2)
and (σ2, σ2) ∈ Id.
The case for the environments’ transitions is immediate from
Sta(ζ, 〈R,R′∗〉α). �

Lemma 20 (Dead Code Elimination). For all σ1 and σ2, if

1. (skip, σ1, Id, Id) �α;γ (C, σ2, Id,G);
2. Sta({ζ, γ}, 〈R,R′∗〉α);
3. (σ1, σ2) ∈ ζ,

then (skip, σ1,R, Id) �α;γ (C, σ2,R′,G).
Proof:. By co-induction.
If C = skip, then (σ1, σ2) ∈ γ. From Sta(γ, 〈R,R′∗〉α), we can
prove the conclusion.
Otherwise, there exists σ′

2 such that (C, σ2) −→ ∗ (skip, σ′
2),

(σ2, σ
′
2) ∈ G∗ and (σ1, σ

′
2) ∈ γ.

Finally, the case for the environments’ transitions is immediate
from Sta(ζ, 〈R,R′∗〉α). �

Lemma 21 (Redundancy Introduction). For all σ1 and σ2, if

1. (c, σ1, Id,G) �α;γ (skip, σ2, Id, Id);

2. Sta({ζ, γ}, 〈R,R′∗〉α);
3. (σ1, σ2) ∈ ζ,

then (c, σ1,R,G) �α;γ (skip, σ2,R′, Id).

Proof:. By co-induction.
Since c is an instruction, by its operational semantics, we only have
four cases:

1. If (c, σ1) −→ (skip, σ′
1), then (σ1, σ

′
1) ∈ G and

(skip, σ2) −→0 (skip, σ2), (σ2, σ2) ∈ Id. From

(skip, σ′
1, Id,G) �α;γ (skip, σ2, Id, Id),

we know (σ′
1, σ2) ∈ γ. Since Sta(γ, 〈R,R′∗〉α), it’s not

difficult to prove

(skip, σ′
1,R,G) �α;γ (skip, σ2,R′, Id).

2. (c, σ1)
e−→ (skip, σ′

1) is impossible.
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3. If (c, σ1) −→ (c, σ1), trivial.

4. (c, σ1) −→ abort is impossible.

Finally, the case for the environments’ transitions is immediate
from Sta(ζ, 〈R,R′∗〉α). �

C. Proof of Theorem 8
We prove for any high-level mutator program W, T(W) �T W.
Suppose W = tgc.AbsGC�t1.C1�. . .�tn.Cn.

Decompositions by RGSim RGSim is sound w.r.t. the e-trace
refinement and the programs of the two levels are all closed systems
whose environments are supposed to be identity transitions, so we
only need to find some α, ζ and γ such that:

(tgc.Cgc ‖ t1.T(C1)‖ . . .‖ tn.T(Cn), Id,True) �α;ζ�γ

(tgc.AbsGC�t1.C1�. . .�tn.Cn, Id,True)

We can decompose it into single threads and prove refinements on
mutator threads by refinements on primitive instructions, as shown
in the following lemma.

Lemma 22. If

1. (Cgc,Rgc,Ggc) �α;ζgc�ζgc (AbsGC,True,AbsGCStep);

2. ∀c. (t.T(c),R(t),G(t.T(c))) �α;ζ(t)�ζ(t) (t.c,R(t),G(t.c));

3. G(t) = ⋃
c G(t.T(c)); G(t) =

⋃
c G(t.c);

R(t) = Ggc ∪
⋃

t′ �=t G(t′); R(t) = AbsGCStep ∪⋃
t′ �=t G(t′);

Rgc =
⋃

t G(t); ζ = ζgc ∩
⋂

t ζ(t);

4. ∀t,B. ζ(t) ⊆ (T(B)⇔⇔B),

then
(tgc.Cgc ‖ t1.T(C1)‖ . . .‖ tn.T(Cn), Id,True) �α;ζ�ζ

(tgc.AbsGC�t1.C1�. . .�tn.Cn, Id,True).

Proof:. By induction over the high-level program structure. �

If InitRelT(ζ(t)) and InitRelT(ζgc), then InitRelT(ζ). Thus
from soundness of RGSim (Corollary 6), we can conclude Correct(T).

From Verification to Refinement for the GC thread Lemma 23
allows proving refinement on the GC thread by verifying the GC
code in a Rely-Guarantee-based logic. Let

ζgc � {(σ,Σ) | σ = T(Σ)}.
Then InitRelT(ζgc). Since InitRelT(ζ(t)) and ζ(t) ⊆ α, we know
ζgc ⊆ α.

Lemma 23. If

1. (Verification of the GC code)
Rgc;Ggc � {pgc}Cgc{false};

2. (Side Conditions)
Ggc ◦ α−1 ⊆ α−1 ◦ (AbsGCStep)∗;
∀σ,Σ. (σ,Σ) ∈ ζgc =⇒ pgc σ; ζgc ⊆ α,

then (Cgc,Rgc,Ggc) �α;ζgc�ζgc (AbsGC,True,AbsGCStep).

The semantics of R;G � {p}C{q} is defined in a traditional
way except we have an extra requirement that C does not generate
external events.

Definition 24 (Non-Interference).
(C, σ,R) guarantees0 G always holds;
(C, σ,R) guaranteesn+1 G holds iff
¬((C, σ) −→ abort), ¬∃C′, σ′, e.((C, σ) e−→ (C′, σ′)), and

1. for all σ′, if (σ, σ′) ∈ R, then (C, σ′,R) guaranteesn G;

2. for all σ′, if (C, σ) −→ (C′, σ′), then (σ, σ′) ∈ G and
(C′, σ′,R) guaranteesn G.

Then, (C, σ,R) guarantees G � ∀k. (C, σ,R) guaranteesk G.

Definition 25 (Semantics). R;G |= {p}C{q} iff, for any σ such
that p σ, the following are true:

1. if (C, σ) R�−→∗(skip, σ′), then q σ′;

2. (C, σ,R) guarantees G,

where (C, σ)
R�−→ (C′, σ′) is defined by:

(C, σ) −→ (C′, σ′)

(C, σ)
R�−→ (C′, σ′)

(σ, σ′) ∈ R
(C, σ)

R�−→ (C, σ′)

Then Lemma 23 is proved immediately from soundness of the
logic (i.e., if R;G � {p}C{q}, then R;G |= {p}C{q}) and the
following lemma.

Lemma 26. For all C,R, G, σ and Σ, if

1. (C, σ,R) guarantees G;

2. G ◦ α−1 ⊆ α−1 ◦ (AbsGCStep)∗;

3. (σ,Σ) ∈ α; and

4. ¬∃σ′.((C, σ) R�−→∗(skip, σ′)),

then (C, σ,R,G) �α;γ (AbsGC,Σ,True,AbsGCStep).

Proof:. By co-induction.
Let S � {(C, σ,Σ) | the premises hold}. We prove S ⊆ F (S)
where F is defined by the simulation. For all (C, σ,Σ) ∈ S, we
only need to consider two cases:

1. If (C, σ) −→ (C′, σ′), then
(σ, σ′) ∈ G and (C′, σ′,R) guarantees G. By the premise
2 and the operational semantics of AbsGC, we know there must
exist Σ′ such that (AbsGC,Σ) −→ ∗ (AbsGC,Σ′), (Σ,Σ′) ∈
(AbsGCStep)∗ and (σ′,Σ′) ∈ α.
Thus (C′, σ′,Σ′) ∈ S.

2. If (σ, σ′) ∈ R, (Σ,Σ′) ∈ True and (σ′,Σ′) ∈ α, then
we have (C, σ′,R) guarantees G and (σ′,Σ′) ∈ α.
Thus (C, σ′,Σ′) ∈ S.

Then we have (C, σ,Σ) ∈ F (S). Thus (C, σ) and (AbsGC,Σ)
satisfy the largest simulation RGSim. �

D. Examples and Their Proofs
D.1 Incrementing a Shared Variable

Some programming languages provide a single instruction to in-
crement a variable. In a concurrent setting, such an instruction
INC(x) is often understood as increasing the value of the shared
variable x atomically. Compilers could have various ways to trans-
form INC(x) to low-level machines. We present two kinds of im-
plementations in Figure 20: inc(x) uses the compare-and-swap
(CAS) instruction to obtain fine-grained atomicity, while inc l(x)
synchronizes reading and writing x by a global lock l. We can view
the CAS instruction x := cas(&y,E1, E2) as a syntax sugar of
〈if (y = E1) {y :=E2;x :=1} else x :=0〉.

To observe the value of x, we use the standard print(E) oper-
ation which will produce an external event out(n) if E evaluates
to n. The source PRT(x) which directly prints out the value of x is
transformed to two targets: prt(x) performs print in a fine-grained
manner; while prt l(x) uses the global lock l to protect accesses
of x.
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INC(x) : atom{ x := x+1; }

(a) Source Code

inc(x) : inc l(x) :
local d, t;

0 d := 0;
1 while (d = 0) {
2 <t := x;>
3 d := cas(&x,t,t+1);

}

0 lock(l);
1 x := x-1;
2 x := x+2;
3 unlock(l);

(b) Target Code: Non-Blocking and Lock-Synchronized

Figure 20. Incrementing a Shared Variable

PRT(x) � print(x);

prt(x) � local t; <t := x;> print(t);

prt l(x) � lock(l); print(x); unlock(l);

D.1.1 Non-Blocking Implementation

The basic requirement for a fine-grained implementation is that
it should not miss any increment when several threads update x
concurrently.

We first define the α relation between low-level and high-level
states, where only the values of x are concerned:

α � {(σ,Σ) | σ(x) = Σ(x)}.
Both inc(x) and INC(x) guarantee that they either do not update
x or only increase the values of x. They are executed in arbitrary
environments which do not modify the thread-local variables.

R � {(σ, σ′) | σ′(t) = σ(t) ∧ σ′(d) = σ(d)}
G � {(σ, σ′) | σ′ = σ{t� , d� }

∨ σ′ = σ{x� σ(x) + 1, t� , d� }}
R � {(Σ,Σ′) | Σ,Σ′ ∈ HState}
G � {(Σ,Σ′) | Σ′ = Σ ∨ Σ′ = Σ{x� Σ(x) + 1}}

Then we can prove the non-blocking inc(x) does not have more
behaviors than the atomic INC(x) in any environment:

(inc(x),R,G) �α;α�α (INC(x),R,G)

where the pre/post conditions are the same as the invariant. On the
other hand, we can also prove INC(x) refines inc(x), i.e.,the latter
has all the behaviors of the former. Thus inc(x) and INC(x) are
actually equivalent:

(inc(x),R,G) �α;α�α (INC(x),R,G). (D.1)

In other words, inc(x) and INC(x) behave just the same.

Similarly, we can prove that prt(x) and PRT(x) are equivalent:

(prt(x),R,G) �α;α�α (PRT(x),R,G). (D.2)

As a simple illustration, we go on to show that the non-blocking
inc(x) can be used by two threads concurrently without missing
any increment, as if x was updated by the threads one after another.
Formally, we prove that (inc(x)‖inc(x)); prt(x) and (INC(x)‖
INC(x)); PRT(x) have the same observable events when the initial
values of x are the same.

By applying the rules PAR and SEQ to (D.1) and (D.2), we can
get:

((inc(x)‖inc(x)); prt(x),R,G) �α;α�α

((INC(x)‖INC(x)); PRT(x),R,G).

By soundness of RGSim (Theorem 5), we come to the final result:

(inc(x)‖inc(x)); prt(x) ≈T (INC(x)‖INC(x)); PRT(x),

for any T that respects α. That is, no matter how the two non-
blocking threads interleave, they complete their operations with
expected behaviors.

We give the complete proofs of (D.1) in Lemmas 27 and 28.
In the proofs, we find out the corresponding program points in
inc(x) and INC(x) and prove their relations by co-induction. Here
we use incl(x) to denote the code from line l to the end of the
program (loops might be unrolled if needed), e.g., inc3(x) is the
sequence of the statement at line 3 and the whole while-loop from
line 1. To simplify the proofs, we omit the cases for the stuttering
state transitions made by skip;C (for some C) and even do not
distinguish C and skip;C in the proofs.

Lemma 27. For all (σ,Σ) ∈ α,

1. (inc(x), σ,R,G) �α;α (INC(x),Σ,R,G);

2. if σ(d) = 0, then (inc1(x), σ,R,G) �α;α (INC(x),Σ,R,G);

3. if σ(d) = 1, then (inc1(x), σ,R,G) �α;α (skip,Σ,R,G);
4. (inc2(x), σ,R,G) �α;α (INC(x),Σ,R,G);

5. (inc3(x), σ,R,G) �α;α (INC(x),Σ,R,G);

6. (skip, σ,R,G) �α;α (skip,Σ,R,G).

Proof:. For each case, by co-induction.
Case: The environments are executed. The proof is trivial since R
does not update d.
Case: The non-blocking counter code goes one step.

1. If (inc(x), σ) −→ (inc1(x), σ′), then σ′(d) = 0 and σ′(x) =
σ(x). Correspondingly, INC(x) does not go any step:

(INC(x),Σ) −→0 (INC(x),Σ), (Σ,Σ) ∈ G
∗.

From the premise 2, we know

(inc1(x), σ′,R,G) �α;α (INC(x),Σ,R,G).

2. If σ(d) = 0 and (inc1(x), σ) −→ (inc2(x), σ′), then σ′ = σ.
Correspondingly:

(INC(x),Σ) −→0 (INC(x),Σ), (Σ,Σ) ∈ G
∗.

From the premise 4, we know

(inc2(x), σ′,R,G) �α;α (INC(x),Σ,R,G).

3. If σ(d) = 1 and (inc1(x), σ) −→ (skip, σ′), then σ′ = σ.
Correspondingly:

(skip,Σ) −→0 (skip,Σ), (Σ,Σ) ∈ G
∗.

From the premise 6, we know

(skip, σ′,R,G) �α;α (skip,Σ,R,G).

4. If (inc2(x), σ) −→ (inc3(x), σ′), then σ(x) = σ′(x). Corre-
spondingly:

(INC(x),Σ) −→0 (INC(x),Σ), (Σ,Σ) ∈ G
∗.

From the premise 5, we know

(inc3(x), σ′,R,G) �α;α (INC(x),Σ,R,G).

5. If (inc3(x), σ) −→ (inc1(x), σ′), then

(a) if σ(x) = σ(t), we have

σ′ = σ{x� σ(x) + 1, d� 1}.
Thus (σ, σ′) ∈ G. Correspondingly:

(INC(x),Σ) −→ (skip,Σ′), Σ′ = Σ{x� Σ(x) + 1}.
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Thus we have (Σ,Σ′) ∈ G
∗ and (σ′,Σ′) ∈ α. From the

premise 3, we know

(inc1(x), σ′,R,G) �α;α (skip,Σ′,R,G).

(b) if σ(x) �= σ(t), then σ′(d) = 0 and σ′(x) = σ(x).
Correspondingly:

(INC(x),Σ) −→0 (INC(x),Σ), (Σ,Σ) ∈ G
∗.

From the premise 2, we know

(inc1(x), σ′,R,G) �α;α (INC(x),Σ,R,G).

Case: Both the non-blocking and the atomic sides are skip, then
they are corresponding trivially. �
Lemma 28. For all (σ,Σ) ∈ α,

1. (INC(x),Σ,R,G) �α−1;α−1 (inc(x), σ,R,G);
2. (skip,Σ,R,G) �α−1;α−1 (skip, σ,R,G).

Proof:. By co-induction.
Case: The environments are executed. Trivial.
Case: The atomic counter code goes one step.
If (INC(x),Σ) −→ (skip,Σ′), then Σ′(x) = Σ(x) + 1. For
inc(x), without the environment’s interference (i.e., x will not be
modified), the statement d:=cas(&x,t,t+1) just after 〈t:=x〉will
find the values of x and t are the same and succeed in updating x.
Thus inc(x) can be executed to skip:

(inc(x), σ) −→∗ (skip, σ′), σ′(x) = σ(x) + 1

Thus (σ, σ′) ∈ G∗ and (σ′,Σ′) ∈ α. Then from the premise 2, we
know

(skip,Σ,R,G) �α−1;α−1 (skip, σ,R,G).
Case: Both sides are skip, then they are corresponding trivially. �
D.1.2 Lock-Synchronized Implementation

We have shown the verification of a similar transformation in Sec-
tion 4.3. So we omit the proof here. Also we have mechanized the
proof [20] in the Coq proof assistant [10].

D.1.3 Incrementing Several Shared Variables

We verified the transformations for INC(x) without caring about
other shared resources. The FRAME rule allows us to combine
several verified transformations together which work on disjoint
parts of states without redoing the proofs.

For example, suppose we have another shared variable y which
can be incremented as well as x. It’s easy to see:

(inc(y),R1,G1) �α1;α1�α1
(INC(y),R1,G1)

where α1 � {(σ,Σ) | σ(y) = Σ(y)} and R1, G1, R1 and G1 are
defined similarly asR, G, R and G except all the occurrences of x
are replaced by y.

By the FRAME rule and other compositionality rules, we can
get:

(inc(x); inc(y); prt(x),R�R1,G � G1) �β;β�β

(INC(x); INC(y); PRT(x),R � R1,G �G1)

where β � α�α1 = {(σ,Σ) | σ(x) = Σ(x)∧σ(y) = Σ(y)}, the
relies ensure that the environments cannot update any local variable
used in incrementing x nor y, and the guarantees just say that the
programs increment x or y or update local variables.

Thus we can conclude the combined transformation is correct:

inc(x); inc(y); prt(x) ≈T INC(x); INC(y); PRT(x) ,

for any T that respects β.

A1 : A2 :
local d1;
d1 := 0;
while (d1 = 0) {

0 atom{
if (a = b)
d1 := 1;

if (a > b)
a := a-b;

}
}

‖

local d2;
d2 := 0;
while (d2 = 0) {

0 atom{
if (b = a)
d2 := 1;

if (b > a)
b := b-a;

}
}

(a) Source Code

C1 : C2 :
local d1, t11, t12;
d1 := 0;
while (d1 = 0) {

0 〈t11 := a;〉
1 〈t12 := b;〉
2 if (t11 = t12)
3 d1 := 1;
4 if (t11 > t12)
5 〈a := t11-t12;〉

}

‖

local d2, t21, t22;
d2 := 0;
while (d2 = 0) {

0 〈t21 := b;〉
1 〈t22 := a;〉
2 if (t21 = t22)
3 d2 := 1;
4 if (t21 > t22)
5 〈b := t21-t22;〉

}

(b) Target Code

Figure 21. Concurrent GCD

D.2 Concurrent GCD

A concurrent GCD program uses two threads to compute the great-
est common divisor (GCD) of the shared variables a and b. One
thread reads the values of a and b, but only updates a if a > b.
Another thread does the reverse. When a = b, the two threads ter-
minate. The source program A1‖A2 where two threads atomically
update a and b respectively is transformed to a fine-grained GCD
program C1‖C2 (in Figure 21).

For the concrete fine-grained and the abstract coarse-grained
GCD programs respectively, prt(a) and PRT(a) print out the re-
sults after the two threads complete their computations. Our goal is
to prove that the concrete and abstract GCD programs always ob-
tain the same result, i.e., (C1‖C2); prt(a) and (A1‖A2); PRT(a)
have the same outputs.

By soundness of RGSim and its compositionality, we only need
to prove that the core computations for updating a (or b) are equiva-
lent in C1 and A1 (or C2 and A2), i.e., C0

1 is equivalent to A0
1 (and

C0
2 is equivalent to A0

2). We use C0
1 (or C0

2 ) to denote the code
from line 0 to line 5 in C1 (or C2), and use A0

1 (or A0
2) to denote

the atomic block in A1 (or A2).

It’s natural to define the α relation as:
α � {(σ,Σ) | σ(a) = Σ(a) ∧ σ(b) = Σ(b)

∧ σ(d1) = Σ(d1) ∧ σ(d2) = Σ(d2)}.
The threads’ guarantees and the expected environments’ behaviors
can be specified as follows:

R1 = G2 � {(σ, σ′) | σ′(t11) = σ(t11) ∧ σ′(t12) = σ(t12)
∧ σ′(d1) = σ(d1) ∧ σ′(a) = σ(a)
∧ (σ(a) ≥ σ(b) ⇒ σ′(b) = σ(b))}

R2 = G1 � {(σ, σ′) | σ′(t21) = σ(t21) ∧ σ′(t22) = σ(t22)
∧ σ′(d2) = σ(d2) ∧ σ′(b) = σ(b)
∧ (σ(b) ≥ σ(a) ⇒ σ′(a) = σ(a))}

R1 = G2 � {(Σ,Σ′) | Σ′(d1) = Σ(d1) ∧ Σ′(a) = Σ(a)
∧ (Σ(a) ≥ Σ(b) ⇒ Σ′(b) = Σ(b))}

R2 = G1 � {(Σ,Σ′) | Σ′(d2) = Σ(d2) ∧ Σ′(b) = Σ(b)
∧ (Σ(b) ≥ Σ(a) ⇒ Σ′(a) = Σ(a))}
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where the environment of C1 (or A1) is just the guarantee of C2

(or A2), and vice versa.

We can prove the equivalence of C0
1 and A0

1:

(C0
1 ,R1,G1) �α;α�α (A0

1,R1,G1).

Then by using the rules WHILE and SEQ, we get C1 and A2 are
equivalent:

(C1,R1,G1) �α;α�α (A1,R1,G1).

Similarly, C2 and A2 are equivalent:

(C2,R2,G2) �α;α�α (A2,R2,G2).

When C1 and C2 (or A1 and A2) are parallel composed to
compute the GCD together, the environment of the whole GCD
program should be the identical transition set because the shared
variables a and b cannot be modified when C1 ‖C2 is computing
their GCD. Its guarantee is just specified as a set of all the possible
state transitions.

R � {(σ, σ′) | σ′ = σ}
G � {(σ, σ′) | σ, σ′ ∈ LState}
R � {(Σ,Σ′) | Σ′ = Σ}
G � {(Σ,Σ′) | Σ,Σ′ ∈ HState}

It is not difficult to prove that prt(a) and PRT(a) are equivalent in
the environmentsR and R respectively:

(prt(a),R,G) �α;α�α (PRT(a),R,G)

Then by using the rules PAR and SEQ, we can get:
((C1‖C2); prt(a),R,G) �α;α�α ((A1‖A2); PRT(a),R,G).

By soundness of RGSim (Theorem 5) we obtain the final result:

(C1‖C2); prt(a) ≈T (A1‖A2); PRT(a),

for any T that respects α.

Thus we have proved that the concrete fine-grained and the ab-
stract coarse-grained GCD programs can obtain the same results
from the same inputs. It’s not difficult to find out the abstract pro-
gram really computes the GCD of a and b. So we can conclude that
the concrete program computes their GCD as well. This example
shows a way to verify a complicated program by proving that it
is equivalent to a simpler program and then verifying the simpler
program.

Below we give the detailed proofs of the similarity between C0
1

and A0
1 in Lemmas 29 and 30.

Lemma 29. For all (σ,Σ) ∈ α,

1. (C0
1 , σ,R1,G1) �α;α (A0

1,Σ,R1,G1);

2. if σ(t11) = σ(a), then (C1
1 , σ,R1,G1) �α;α (A0

1,Σ,R1,G1);

3. if σ(t11) = σ(a) and σ(t11) < σ(t12),
then (C2

1 , σ,R1,G1) �α;α (skip,Σ,R1,G1);

4. if σ(t11) = σ(a), σ(t12) = σ(b) and σ(t11) >= σ(t12),
then (C2

1 , σ,R1,G1) �α;α (A0
1,Σ,R1,G1);

5. if σ(t11) = σ(a), σ(t12) = σ(b) and σ(t11) = σ(t12),
then (C3

1 , σ,R1,G1) �α;α (A0
1,Σ,R1,G1);

6. if σ(t11) = σ(a), σ(t11) <= σ(t12) and (σ(t11) =
σ(t12)) =⇒ (σ(d1) = 1),
then (C4

1 , σ,R1,G1) �α;α (skip,Σ,R1,G1);

7. if σ(t11) = σ(a), σ(t12) = σ(b) and σ(t11) > σ(t12),
then (C4

1 , σ,R1,G1) �α;α (A0
1,Σ,R1,G1);

8. if σ(t11) = σ(a), σ(t12) = σ(b) and σ(t11) > σ(t12),
then (C5

1 , σ,R1,G1) �α;α (A0
1,Σ,R1,G1);

9. (skip, σ,R1,G1) �α;α (skip,Σ,R1,G1).

Proof:. For each case, by co-induction.
Case: The environments are executed. The proof is trivial since
the conditions for each case are just preserved under the transitions
made byR1 and R1.
Case: The concrete GCD goes one step.

1. If (C0
1 , σ) −→ (C1

1 , σ
′), then σ′ = σ{t11 � σ(a)}, thus

(σ, σ′) ∈ G1. Correspondingly, the abstract code does not go
any step:

(A0
1,Σ) −→0 (A0

1,Σ), (Σ,Σ) ∈ G
∗
1.

From the premise 2, we know

(C1
1 , σ

′,R1,G1) �α;α (A0
1,Σ,R1,G1).

2. If σ(t11) = σ(a) and (C1
1 , σ) −→ (C2

1 , σ
′), then σ′ =

σ{t12� σ(b)}, thus (σ, σ′) ∈ G1.

(a) If σ(t11) < σ(t12), then σ(a) < σ(b). From the α
relation, we know Σ(a) < Σ(b). Thus on the atomic side:

(A0
1,Σ) −→1 (skip,Σ), (Σ,Σ) ∈ G

∗
1.

From the premise 3, we know

(C2
1 , σ

′,R1,G1) �α;α (skip,Σ,R1,G1).

(b) If σ(t11) >= σ(t12), then on the atomic side:

(A0
1,Σ) −→0 (A0

1,Σ), (Σ,Σ) ∈ G
∗
1.

From the premise 4, we know

(C2
1 , σ

′,R1,G1) �α;α (A0
1,Σ,R1,G1).

3. If σ(t11) = σ(a) and σ(t11) < σ(t12), then (C2
1 , σ) −→

(C4
1 , σ). On the atomic side,

(skip,Σ) −→0 (skip,Σ), (Σ,Σ) ∈ G1.

From the premise 6, we know

(C4
1 , σ,R1,G1) �α;α (skip,Σ,R1,G1).

4. If σ(t11) = σ(a), σ(t12) = σ(b) and

(a) σ(t11) = σ(t12), then (C2
1 , σ) −→ (C3

1 , σ).
Correspondingly, the atomic code does not go any step.
From the premise 5, we know

(C3
1 , σ,R1,G1) �α;α (A0

1,Σ,R1,G1).

(b) σ(t11) > σ(t12), then (C2
1 , σ) −→ (C4

1 , σ).
Correspondingly, the atomic code does not go any step.
From the premise 7, we know

(C4
1 , σ,R1,G1) �α;α (A0

1,Σ,R1,G1).

5. If σ(t11) = σ(a), σ(t12) = σ(b) and σ(t11) = σ(t12),
then (C3

1 , σ) −→ (C4
1 , σ

′), and σ′ = σ{d1� 1}. From the α
relation, we know Σ(a) = Σ(b).
Thus on the atomic side:

(A0
1,Σ) −→1 (skip,Σ′), Σ′ = Σ{d1� 1}.

Thus (Σ,Σ′) ∈ G
∗
1 and (σ′,Σ′) ∈ α. From the premise 6, we

know

(C4
1 , σ

′,R1,G1) �α;α (skip,Σ,R1,G1).

6. If σ(t11) = σ(a), σ(t11) <= σ(t12) and (σ(t11) =
σ(t12)) =⇒ (σ(d1) = 1), then (C4

1 , σ) −→ (skip, σ). From
the premise 9, we know

(skip, σ,R1,G1) �α;α (skip,Σ,R1,G1).
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PUSH(v) : POP() :

0 atom {
A := v::A;

}

local r;
0 atom {

if (A = ε) {
r := EMPTY;

}else {
r := hd(A);
A := tl(A);

}
}
return r;

(a) An Abstract Stack

push(v) : pop() :

local d, x, t;
0 x := new Cell();
1 x.data := v;
2 d := 0;
3 while (d = 0) {
4 <t := S;>
5 x.next := t;
6 d := cas(&S,t,x);

}

local r, d, x, t;
0 d := 0;
1 while (d = 0) {
2 <t := S;>
3 if (t = null) {
4 r := EMPTY;
5 d := 1;

}else {
6 r := t.data;
7 x := t.next;
8 d := cas(&S,t,x);

}
}
return r;

(b) Treiber’s Non-Blocking Stack

Figure 22. The Stack Object

7. If σ(t11) = σ(a), σ(t12) = σ(b) and σ(t11) > σ(t12),
then from the premise 8, we can prove this case.

8. If σ(t11) = σ(a), σ(t12) = σ(b) and σ(t11) > σ(t12),
then (C5

1 , σ) −→ (skip, σ′), and σ′ = σ{a� (σ(a)−σ(b))}.
From the α relation, we know Σ(a) > Σ(b). Thus on the
atomic side:

(A0
1,Σ) −→1 (skip,Σ′), Σ′ = Σ{a� (Σ(a)− Σ(b))}

Thus (Σ,Σ′) ∈ G
∗
1 and (σ′,Σ′) ∈ α. From the premise 9, we

know

(skip, σ′,R1,G1) �α;α (skip,Σ′,R1,G1).

Case: Both sides are skip, then they are corresponding trivially. �

Lemma 30. For all (σ,Σ) ∈ α,

1. (A0
1,Σ,R1,G1) �α−1;α−1 (C0

1 , σ,R1,G1);
2. (skip,Σ,R1,G1) �α−1;α−1 (skip, σ,R1,G1).

Proof:. By co-induction.
The proof is similar to that of Lemma 28, where the key is that
without the environment’s interference, C0

1 does exactly the same
things as A0

1. �

D.3 Treiber’s Non-Blocking Stack

We prove atomicity of Treiber’s non-blocking stack. As shown in
Figure 22, the stack interface consists of two operations: PUSH(v)
and POP(). The abstract stack A is a value sequence and the opera-
tions are executed atomically. PUSH(v) and POP() are transformed
to the non-blocking programs push(v) and pop() respectively,
where the stack is implemented as a singly-linked list pointed to
by a shared variable S. The non-blocking stack uses the CAS in-
struction to obtain fine-grained atomicity.

We first define a predicate ms |= list(x,A) to represent a
singly-linked list at the current library state ms whose head node’s
address is x and values form a sequence A. The domain of ms is
the set of all the nodes’ addresses of the list.

ms |= list(x,A) � (dom(ms) = φ ∧ x = null ∧A = ε)
∨ (∃v.∃y.∃B.ms(x) = (v, y) ∧A = v ::B

∧ ms\{x} |= list(y,B))

For the high-level and low-level library states, we only consider the
value sequence on the stack:

shared map(ms,Ms) � ∃σ̂s. σ̂s |= list(ms(S),Ms(A))
∧ σ̂s ⊆ ms\{S}

It requires that the concrete library state ms has a sub-state σ̂s of
a linked list as the stack, and the concrete stack has the same value
sequence as the abstract one. Since S is a shared variable containing
the address of the top node, it itself is not in the domain of σ̂s. On
the other hand, for each thread t, the value of v in the low-level
local state should be the same as in the high-level local state, and
the low-level local state should provide enough additional space
needed by the object operations (i.e., the local variables d, x, t and
r).

local map(ml,Ml) � ml(v) = Ml(v)
∧ ∃m′

l. ml = m′
l � {d� , x� , t� , r� }

Then α is defined as follows:
α � {((π,ms), (Π,Ms)) | shared map(ms,Ms)

∧ ∀t ∈ dom(Π). local map(π(t),Π(t))

The program guarantees and relies can be specified as follows:

Gpush(t) � {((π � {t� ml},ms), (π � {t� m′
l},m′

s))
| ∃v.∃x ∈ dom(ml). x �∈ dom(m′

l)∧ m′
s = ms{S� x} � {x� (v,ms(S))}}

Gpop(t) � {((π � {t� ml},ms), (π � {t� m′
l},m′

s))
| ∃x.∃v.∃y. ms(S) = x ∧ms(x) = (v, y)
∧ m′

s = ms{S� y}}
Glocal(t) � {((π � {t� ml},ms), (π � {t� m′

l},ms))}
G(t) � Gpush(t) ∪ Gpop(t) ∪ Glocal(t)
R(t) �

⋃
t′ �=t G(t′)

Gpush(t) � {((Π � {t�Ml},Ms), (Π � {t�M ′
l},M ′

s))
| ∃v. M ′

s = Ms{A� v ::Ms(A)}}
Gpop(t) � {((Π � {t�Ml},Ms), (Π � {t�M ′

l},M ′
s))

| ∃v.∃B. Ms(A) = v ::B ∧M ′
s = Ms{A� B}}

Glocal(t) � {((Π � {t�Ml},Ms), (Π � {t�M ′
l},Ms))}

G(t) � Gpush(t) ∪ Gpop(t) ∪ Glocal(t)
R(t) �

⋃
t′ �=t G(t′)

The ownership transfer in push(v) is reflected in the guarantee
Gpush(t), where the node x is transferred from the client state to the
library state. A client thread guarantees only performing push and
pop operations and local operations, and it is executed concurrently
with other client threads.

We prove the non-blocking stack operations are simulated by
the corresponding atomic operations in Lemmas 31 and 32.

(t.push(v),R(t),G(t)) �α;α�α (t.PUSH(v),R(t),G(t));
(t.(r := pop()),R(t),G(t)) �α;α�α (t.(r := POP()),R(t),G(t)).

This gives us the atomicity of the non-blocking implementation of
the stack object.

Lemma 31. For all (σ,Σ) ∈ α where σ = (π,ms) and Σ =
(Π,Ms),

1. (push(v), σ,R(t),G(t)) �α;α (PUSH(v),Σ,R(t),G(t));

2. if there exists x such that π(t)(x) = x and π(t)(x) = ( , ),
then (push1(v), σ,R(t),G(t)) �α;α (PUSH(v),Σ,R(t),G(t));
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3. if there exists x such that π(t)(x) = x and π(t)(x) =
(π(t)(v), ),
then (push2(v), σ,R(t),G(t)) �α;α (PUSH(v),Σ,R(t),G(t));

4. if π(t)(d) = 1,
then (push3(v), σ,R(t),G(t)) �α;α (skip,Σ,R(t),G(t));

5. if π(t)(d) = 0 and there exists x such that π(t)(x) = x and
π(t)(x) = (π(t)(v), ),
then (push3(v), σ,R(t),G(t)) �α;α (PUSH(v),Σ,R(t),G(t));

6. if there exists x such that π(t)(x) = x and π(t)(x) =
(π(t)(v), ),
then (push4(v), σ,R(t),G(t)) �α;α (PUSH(v),Σ,R(t),G(t));

7. if there exists x such that π(t)(x) = x and π(t)(x) =
(π(t)(v), ),
then (push5(v), σ,R(t),G(t)) �α;α (PUSH(v),Σ,R(t),G(t));

8. if there exists x such that π(t)(x) = x and π(t)(x) =
(π(t)(v), π(t)(t)),
then (push6(v), σ,R(t),G(t)) �α;α (PUSH(v),Σ,R(t),G(t));

9. (skip, σ,R(t),G(t)) �α;α (skip,Σ,R(t),G(t)).

Proof:. By co-induction.
Case: The environments are executed. Trivial.
Case: The concrete code goes one step.

1. If (push, σ) −→ (push1, σ′), then there exists x such that

π′ = π{t� π(t){x� x} � {x� ( , )}}, m′
s = ms.

Correspondingly, the atomic code does not go any step:

(PUSH,Σ) −→0 (PUSH,Σ), (Σ,Σ) ∈ G(t)∗.

From the premise 2, we know

(push1, σ′,R(t),G(t)) �α;α (PUSH,Σ,R(t),G(t)).

2. Similar to the first case (but using the premise 3) and omitted.

3. Similar to the first case (but using the premise 5) and omitted.

4. If π(t)(d) = 1, then

(push3, σ) −→ (skip, σ).

Correspondingly, on the atomic side:

(skip,Σ) −→0 (skip,Σ), (Σ,Σ) ∈ G(t)∗.

From the premise 9, we know

(skip, σ,R(t),G(t)) �α;α (skip,Σ,R(t),G(t)).

5. Similar to the first case (but using the premise 6) and omitted.

6. Similar to the first case (but using the premise 7) and omitted.

7. Similar to the first case (but using the premise 8) and omitted.

8. If (push6, σ) −→ (push3, σ′), then

(a) if ms(S) = π(t)(t), then (σ, σ′) ∈ G(t) and

π′ = π{t� π(t){d� 1}}
m′

s = ms{S� x} � {x� (π(t)(v),ms(S))}
where x = π(t)(x).
Correspondingly, on the atomic side:

(PUSH,Σ) −→ (skip,Σ′), (Σ,Σ′) ∈ G(t)∗

where

Π′ = Π
M ′

s = Ms{A� Π(t)(v) ::Ms(A)}

We know π(t)(v) = Π(t)(v). And there exists a sub-state
σ̂s such that

σ̂s |= list(ms(S),Ms(A)). (D.1)

Let

σ̂′
s = σ̂s � {m′

s(S)� (π(t)(v),ms(S))}. (D.2)

Then from (D.1) and (D.2), we can prove that

σ̂′
s |= list(m′

s(S),Π(t)(v) ::Ms(A)). (D.3)

Moreover, σ̂′
s is a sub-state of m′

s\{S}.
Thus shared map(m′

s,M
′
s). As a result, we have (σ′,Σ′) ∈

α. From the premise 4, we know

(push3, σ′,R(t),G(t)) �α;α (skip,Σ′,R(t),G(t)).

(b) if ms(S) �= π(t)(t), then

π′ = π{t� π(t){d� 0}} and m′
s = ms.

Correspondingly, the atomic code does not go any step.
Then from the premise 5, we know

(push3, σ′,R(t),G(t)) �α;α (PUSH,Σ,R(t),G(t)).

Case: Both sides are skip, then they are corresponding trivially. �

For the POP operation, we assume the returned value r will be
assigned to a variable r.

Lemma 32. For all (σ,Σ) ∈ α where σ = (π,ms) and Σ =
(Π,Ms),

1. (r := pop(), σ,R(t),G(t)) �α;α (r := POP(),Σ,R(t),G(t));

2. if π(t)(d) = 0,
then
(r := pop1()(), σ,R(t),G(t)) �α;α (r := POP(),Σ,R(t),G(t));

3. if π(t)(d) = 1 and π(t)(r) = Π(t)(r),
then (r := pop1(), σ,R(t),G(t)) �α;α (r := r,Σ,R(t),G(t));

4. (r := pop2(), σ,R(t),G(t)) �α;α (r := POP(),Σ,R(t),G(t));

5. if there exists x such that π(t)(t) = x and ms(x) = ( , ),
then
(r := pop3(), σ,R(t),G(t)) �α;α (r := POP(),Σ,R(t),G(t));

6. if π(t)(t) = null and Π(t)(r) = EMPTY,
then (r := pop3(), σ,R(t),G(t)) �α;α (r := r,Σ,R(t),G(t));

7. if Π(t)(r) = EMPTY,
then (r := pop4(), σ,R(t),G(t)) �α;α (r := r,Σ,R(t),G(t));

8. if π(t)(r) = Π(t)(r),
then (r := pop5(), σ,R(t),G(t)) �α;α (r := r,Σ,R(t),G(t));

9. if there exists x such that π(t)(t) = x and ms(x) = ( , ),
then
(r := pop6(), σ,R(t),G(t)) �α;α (r := POP(),Σ,R(t),G(t));

10. if there exists x such that π(t)(t) = x, ms(x) = ( , ) and
ms(S) = x =⇒ ms(x) = (π(t)(r), ),
then
(r := pop7(), σ,R(t),G(t)) �α;α (r := POP(),Σ,R(t),G(t));

11. if there exists x such that π(t)(t) = x, ms(x) = ( , ) and
ms(S) = x =⇒ ms(x) = (π(t)(r), π(t)(x)),
then
(r := pop8(), σ,R(t),G(t)) �α;α (r := POP(),Σ,R(t),G(t));

12. if π(t)(r) = Π(t)(r),
then (r := r, σ,R(t),G(t)) �α;α (r := r,Σ,R(t),G(t)).
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Proof:. By co-induction.
Case: The environments are executed. Trivial.
Case: The concrete pop operation goes one step.

1. If (r := pop(), σ) −→ (r := pop1(), σ′), then

m′
s = ms, π′ = π{t� π(t){d� 0}}.

Thus (σ, σ′) ∈ G(t). Correspondingly, the atomic code does
not go any step. From the premise 2, we know

(r := pop1(), σ′,R(t),G(t)) �α;α

(r := POP(),Σ,R(t),G(t))

2. Similar and omitted (using the premise 4).

3. If π(t)(d) = 1, then

(r := pop1(), σ) −→ (r := r, σ).

Correspondingly, the atomic code does not go any step. From
the premise 12, we know

(r := r, σ,R(t),G(t)) �α;α (r := r,Σ,R(t),G(t)).

4. If (r := pop2(), σ) −→ (r := pop3(), σ′), then

m′
s = ms, π′ = π{t� π(t){t� ms(S)}}.

(a) If ms(S) = null, then π′(t)(t) = null.
Thus there exists σ̂s such that

σ̂s |= list(null,Ms(A)).

Thus Ms(A) = ε.
Correspondingly, on the atomic side:

(r := POP(),Σ) −→ (r := r,Σ′), (Σ,Σ′) ∈ G(t)∗

where

M ′
s = Ms, Π′ = Π{t� Π(t){r� EMPTY}}.

From the premise 6, we know

(r := pop3(), σ′,R(t),G(t)) �α;α

(r := r,Σ′,R(t),G(t))

(b) If ms(S) �= null, then from

σ̂s |= list(ms(S),Ms(A)),

we know there exists x such that π′(t)(t) = x and
m′

s(x) = ( , ).
Correspondingly, the atomic code does not go any step.
From the premise 5, we know

(r := pop3(), σ′,R(t),G(t)) �α;α

(r := POP(),Σ,R(t),G(t))

5. Similar and omitted (using the premise 9).

6. Similar and omitted (using the premise 7).

7. Similar and omitted (using the premise 8).

8. Similar and omitted (using the premise 3).

9. Similar and omitted (using the premise 10).

10. Similar and omitted (using the premise 11).

11. If (r := pop8(), σ) −→ (r := pop1(), σ′), then

(a) if ms(S) = π(t)(t) = x, then (σ, σ′) ∈ G(t) and

π′ = π{t� π(t){d� 1}}
m′

s = ms{S� π(t)(x)}. (D.1)

From (σ,Σ) ∈ α, there exists σ̂s such that

σ̂s |= list(x,Ms(A)). (D.2)

Since (D.2) and

ms(x) = (π(t)(r), π(t)(x)), (D.3)

there exists B such that
Ms(A) = π(t)(r) ::B,
σ̂s\{x} |= list(π(t)(x), B).

(D.4)

Correspondingly, on the atomic side:

(r := POP(),Σ) −→ (r := r,Σ′), (Σ,Σ′) ∈ G(t)∗

where
Π′(t)(r) = π(t)(r),M ′

s(A) = B. (D.5)
From (D.4) and (D.5), we have

σ̂s\{x} |= list(m′
s(S),M

′
s(A)). (D.6)

Since (D.1) and σ̂s is a sub-state of ms\{S}, we know

σ̂s\{x} ⊆ m′
s\{S}. (D.7)

From (D.6) and (D.7), we have

(σ′,Σ′) ∈ α. (D.8)

From (D.1) and (D.5), we have

π′(t)(r) = Π′(t)(r). (D.9)

Thus from (D.1), (D.8), (D.9) and the premise 3, we know

(r := pop1(), σ′,R(t),G(t)) �α;α

(r := r,Σ′,R(t),G(t))

(b) if ms(S) �= π(t)(t), then

m′
s = ms, π′ = π{t� π(t){d� 0}}.

Correspondingly, the atomic code does not go any step.
Then from the premise 2, we know

(r := pop1(), σ′,R(t),G(t)) �α;α

(r := POP(),Σ,R(t),G(t))

Case: Both sides are r := r, the proof is trivial. �
D.4 Lock-Coupling List

To prove add(e) refines ADD(e), we analyze the algorithm step by
step and find out the commands whose executions correspond to the
high-level single atomic step (i.e., the linearization points). Since
we require the elements in the concrete list are those in the abstract
set, we pick line 15 as the linearization point of a successful call
where the new node containing the value e is inserted into the list.
For unsuccessful calls (e is already in the set), we choose lines 3
and 9 where the value e is read from an existing list node. Similarly,
for rmv(e), we choose line 13 (for successful calls) and lines 3 and
9 (for unsuccessful calls) as linearization points.

From the definition of Glib(t), we can find that when the thread
t holds the lock of a node, it can only delete the node from the list,
update its next field or release the lock; otherwise, it cannot update
the node’s fields nor delete its next node. The data field of a list
node will never be updated. The algorithm takes advantage of these
knowledges and safely reads a node’s data field when holding only
its predecessor’s lock. We successfully handle these subtle issues
in our proofs. Moreover, our proofs illustrate that after the current
thread releases the lock of a node, it does not care about the node
any more, which coincides with the fact that the environment can
then manipulate the node. We also deal with ownership transfers
and dynamic allocation and deallocation in our proofs.
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Lemma 33. For all (σ,Σ) ∈ α where σ = (π,ms) and Σ =
(Π,Ms),

1. (t.add(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

2. if there exists x such that π(t)(x) = ms(Head) = x, then
(t.add1(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

3. if there exist x and z such that π(t)(x) = ms(Head) = x and
ms(x) = (t, MIN VAL, z), then
(t.add2(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

4. if there exist x and z such that π(t)(x) = ms(Head) = x,
ms(x) = (t, MIN VAL, z) and π(t)(z) = z, then
(t.add3(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

5. if there exist x, z, e, v and u such that π(t)(e) = e, π(t)(x) =
x, π(t)(z) = z, π(t)(u) = u, ms(x) = (t, v, z), ms(z) =
( , u, ), v < e and u �= e, then
(t.add4(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

6. if there exist x, z, e and v such that π(t)(e) = π(t)(u) = e,
π(t)(x) = x, π(t)(z) = z, ms(x) = (t, v, z), ms(z) =
( , e, ) and v < e, then
(t.add4(e), σ,R(t),G(t)) �α;α (t.skip,Σ,R(t),G(t));

7. if there exist x, z and u such that π(t)(x) = x, π(t)(z) = z,
π(t)(u) = u, ms(x) = (t, , z), ms(z) = ( , u, ) and
u < π(t)(e), then
(t.add5(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

8. if there exist x, z and u such that π(t)(x) = x, π(t)(z) = z,
π(t)(u) = u, ms(x) = (t, , z), ms(z) = (t, u, ) and
u < π(t)(e), then
(t.add6(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

9. if there exist z and u such that π(t)(z) = z, π(t)(u) = u,
ms(z) = (t, u, ) and u < π(t)(e), then
(t.add7(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

10. if there exist z and u such that π(t)(x) = z, π(t)(z) = z,
π(t)(u) = u, ms(z) = (t, u, ) and u < π(t)(e), then
(t.add8(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

11. if there exist x, z and u such that π(t)(x) = x, π(t)(z) = z,
π(t)(u) = u, ms(x) = (t, u, z) and u < π(t)(e), then
(t.add9(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

12. if there exist x, z, e, v and u such that π(t)(e) = e, π(t)(x) =
x, π(t)(z) = z, π(t)(u) = u, ms(x) = (t, v, z), ms(z) =
( , u, ), v < e < u, then
(t.add10(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

13. if there exist x, z, v and u such that π(t)(e) = π(t)(u) = e,
π(t)(x) = x, π(t)(z) = z, ms(x) = (t, v, z), ms(z) =
( , e, ) and v < e, then
(t.add10(e), σ,R(t),G(t)) �α;α (t.skip,Σ,R(t),G(t));

14. if there exist x, z, v and u such that π(t)(x) = x, π(t)(z) = z,
π(t)(u) = u, ms(x) = (t, v, z), ms(z) = ( , u, ) and
v < π(t)(e) < u, then
(t.add11(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

15. if there exist x, y, z, v and u such that π(t)(x) = x, π(t)(y) =
y, π(t)(z) = z, π(t)(y) = ( , , ), ms(x) = (t, v, z),
ms(z) = ( , u, ) and v < π(t)(e) < u, then
(t.add12(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

16. if there exist x, y, z, v and u such that π(t)(x) = x, π(t)(y) =
y, π(t)(z) = z, π(t)(y) = (0, , ), ms(x) = (t, v, z),
ms(z) = ( , u, ) and v < π(t)(e) < u, then
(t.add13(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

17. if there exist x, y, z, e, v and u such that π(t)(e) = e,
π(t)(x) = x, π(t)(y) = y, π(t)(z) = z, π(t)(y) = (0, e, ),
ms(x) = (t, v, z), ms(z) = ( , u, ) and v < e < u, then
(t.add14(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

18. if there exist x, y, z, e, v and u such that π(t)(e) = e,
π(t)(x) = x, π(t)(y) = y, π(t)(z) = z, π(t)(y) = (0, e, z),
ms(x) = (t, v, z), ms(z) = ( , u, ) and v < e < u, then
(t.add15(e), σ,R(t),G(t)) �α;α (t.ADD(e),Σ,R(t),G(t));

19. if there exists x such that π(t)(x) = x and ms(x) = (t, , ),
then
(t.add16(e), σ,R(t),G(t)) �α;α (t.skip,Σ,R(t),G(t));

20. (t.skip, σ,R(t),G(t)) �α;α (t.skip,Σ,R(t),G(t));

Proof:. By co-induction. �
Lemma 34. For all (σ,Σ) ∈ α where σ = (π,ms) and Σ =
(Π,Ms),

1. (t.rmv(e), σ,R(t),G(t)) �α;α (t.RMV(e),Σ,R(t),G(t));

2. if there exists x such that π(t)(x) = ms(Head) = x, then
(t.rmv1(e), σ,R(t),G(t)) �α;α (t.RMV(e),Σ,R(t),G(t));

3. if there exist x and y such that π(t)(x) = ms(Head) = x and
ms(x) = (t, MIN VAL, y), then
(t.rmv2(e), σ,R(t),G(t)) �α;α (t.RMV(e),Σ,R(t),G(t));

4. if there exist x and y such that π(t)(x) = ms(Head) = x,
ms(x) = (t, MIN VAL, y) and π(t)(y) = y, then
(t.rmv3(e), σ,R(t),G(t)) �α;α (t.RMV(e),Σ,R(t),G(t));

5. if there exist x, y, e, v and u such that π(t)(e) = e, π(t)(x) =
x, π(t)(y) = y, π(t)(v) = v, ms(x) = (t, u, y), ms(y) =
( , v, ), u < e and v ≤ e, then
(t.rmv4(e), σ,R(t),G(t)) �α;α (t.RMV(e),Σ,R(t),G(t));

6. if there exist x, y, e, v and u such that π(t)(e) = e, π(t)(x) =
x, π(t)(y) = y, π(t)(v) = v, ms(x) = (t, u, y), ms(y) =
( , v, ), u < e < v, then
(t.rmv4(e), σ,R(t),G(t)) �α;α (t.skip,Σ,R(t),G(t));

7. if there exist x, y and v such that π(t)(x) = x, π(t)(y) = y,
π(t)(v) = v, ms(x) = (t, , y), ms(y) = ( , v, ) and
v < π(t)(e), then
(t.rmv5(e), σ,R(t),G(t)) �α;α (t.RMV(e),Σ,R(t),G(t));

8. if there exist x, y and v such that π(t)(x) = x, π(t)(y) = y,
π(t)(v) = v, ms(x) = (t, , y), ms(y) = (t, v, ) and
v < π(t)(e), then
(t.rmv6(e), σ,R(t),G(t)) �α;α (t.RMV(e),Σ,R(t),G(t));

9. if there exist y and v such that π(t)(y) = y, π(t)(v) = v,
ms(z) = (t, v, ) and v < π(t)(e), then
(t.rmv7(e), σ,R(t),G(t)) �α;α (t.RMV(e),Σ,R(t),G(t));

10. if there exist y and v such that π(t)(x) = y, π(t)(y) = y,
π(t)(v) = v, ms(y) = (t, v, ) and v < π(t)(e), then
(t.rmv8(e), σ,R(t),G(t)) �α;α (t.RMV(e),Σ,R(t),G(t));

11. if there exist x, y and v such that π(t)(x) = x, π(t)(y) = y,
π(t)(v) = v, ms(x) = (t, v, y) and v < π(t)(e), then
(t.rmv9(e), σ,R(t),G(t)) �α;α (t.RMV(e),Σ,R(t),G(t));

12. if there exist x, y, e and u such that π(t)(e) = π(t)(v) = e,
π(t)(x) = x, π(t)(y) = y, ms(x) = (t, u, y), ms(y) =
( , e, ) and u < e, then
(t.rmv10(e), σ,R(t),G(t)) �α;α (t.RMV(e),Σ,R(t),G(t));

13. if there exist x, y, e, v and u such that π(t)(e) = e, π(t)(x) =
x, π(t)(y) = y, π(t)(v) = v, ms(x) = (t, u, y), ms(y) =
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( , v, ) and u < e < v, then
(t.rmv10(e), σ,R(t),G(t)) �α;α (t.skip,Σ,R(t),G(t));

14. if there exist x, y, e and u such that π(t)(e) = π(t)(v) = e,
π(t)(x) = x, π(t)(y) = y, ms(x) = (t, u, y), ms(y) =
( , e, ) and u < e, then
(t.rmv11(e), σ,R(t),G(t)) �α;α (t.RMV(e),Σ,R(t),G(t));

15. if there exist x, y, e and u such that π(t)(e) = π(t)(v) = e,
π(t)(x) = x, π(t)(y) = y, ms(x) = (t, u, y), ms(y) =
(t, e, ) and u < e, then
(t.rmv12(e), σ,R(t),G(t)) �α;α (t.RMV(e),Σ,R(t),G(t));

16. if there exist x, y, z, e and u such that π(t)(e) = π(t)(v) = e,
π(t)(x) = x, π(t)(y) = y, π(t)(z) = z, ms(x) = (t, u, y),
ms(y) = (t, e, z) and u < e, then
(t.rmv13(e), σ,R(t),G(t)) �α;α (t.RMV(e),Σ,R(t),G(t));

17. if there exist x, y, z, e and u such that π(t)(e) = π(t)(v) = e,
π(t)(x) = x, π(t)(y) = y, π(t)(z) = z, π(t)(y) = (t, e, z),
ms(x) = (t, u, z) and u < e, then
(t.rmv14(e), σ,R(t),G(t)) �α;α (t.skip,Σ,R(t),G(t));

18. if there exist y such that π(t)(y) = y and π(t)(y) = ( , , ),
then
(t.rmv15(e), σ,R(t),G(t)) �α;α (t.RMV(e),Σ,R(t),G(t));

19. if there exists x such that π(t)(x) = x and ms(x) = (t, , ),
then
(t.rmv16(e), σ,R(t),G(t)) �α;α (t.skip,Σ,R(t),G(t));

20. (t.skip, σ,R(t),G(t)) �α;α (t.skip,Σ,R(t),G(t));

Proof:. By co-induction. �

D.5 Strength Reduction and Induction Variable Elimination

Target-Level C2

local k, r;
k := 0;
r := 6*n;
while(k<r) {

x := x+k;
k := k+6;

}

⇐

Medium-Level C1

local i, k;
i := 0;
k := 0;
while(i<n) {

x := x+k;
i := i+1;
k := k+6;

}

⇐

Source-Level C
local i;
i := 0;
while(i<n) {

x := x+6*i;
i := i+1;

}

The source program C is first transformed to C1 by strength reduc-
tion which introduces a local variable k and replaces multiplication
by addition. The original induction variable i and the introduced
local variable k cannot be updated by the environments. Then C1

is transformed to the target C2 by eliminating i and using the new
induction variable k in the while-condition. We assume n and r will
not be updated by the target environment, so we can compute the
new boundary outside the loop.

R2 � {(σ2, σ′
2) | σ2(k) = σ′

2(k) ∧ σ2(r) = σ′
2(r) ∧ σ2(n) = σ′

2(n)}
R1 � {(σ1, σ′

1) | σ1(i) = σ′
1(i) ∧ σ1(k) = σ′

1(k)}
R � {(σ, σ′) | σ(i) = σ′(i)}
G � True

Correctness of the two transformations are formalized as follows:
(C2,R2,G) �α;α�α (C1,R1,G), (C1,R1,G) �β;β�β (C,R,G)

where

α � {(σ2, σ1) | σ2(k) = σ1(k) ∧ σ2(n) = σ1(n) ∧ σ2(x) = σ1(x)}
β � {(σ1, σ) | σ1(i) = σ(i) ∧ σ1(n) = σ(n) ∧ σ1(x) = σ(x)}

The proofs are not difficult by the RGSim definition or by the
optimization rules.

C1 C2

0 t1 := y;
1 if (t1 = 1)
2 x := 1;
3 t1 := x;
4 print(t1);

‖

0 t2 := x;
1 if (t2 = 1)
2 y := 1;
3 t2 := y;
4 print(t2);

(a) Source Code

C′
1 C′

2
0 t1 := x;
1 print(t1);

‖ 0 t2 := y;
1 print(t2);

(b) Target Code

Figure 23. Dead Code Elimination Example

Afterwards, we can compose the proofs of these two transfor-
mations by the TRANS rule, and get:

(C2,R2,G) �β◦α;β◦α�β◦α (C,R,G) ,
where

β ◦ α = {(σ2, σ) | σ2(n) = σ(n) ∧ σ2(x) = σ(x)} .
That is, the optimization phases are correct when the source pro-
gram is executed in an environment that does not change i nor n.

D.6 Dead Code Elimination for Data-Race-Free Programs

As shown in Figure 23, C1 and C2 are transformed to C′
1 and C′

2

respectively, assuming the values of x and y are both 0 in the initial
state.

α � {(σT , σS) | σT (x) = σS(x) ∧ σT (y) = σS(y)}
ζ � {(σT , σS) | σT (x) = σS(x) = 0 ∧ σT (y) = σS(y) = 0}

We assume C1 ‖ C2 is a closed program. Thus correctness of the
transformation is formalized as follows:

(C′
1‖C′

2, Id,True) �α;ζ�ζ (C1‖C2, Id,True) (D.1)

The transformation is syntax-directed, so we decompose (D.1)
into single threads. Due to the symmetry between C1 and C2, we
only prove:

(C′
1,R1,G1) �α;ζ�ζ (C1,R1,G1)

where
R1 � {(σ, σ′) | σ(t1) = σ′(t1) ∧ σ(x) = σ′(x) ∧ σ(y) = σ′(y)}
G1 � {(σ, σ′) | σ(t2) = σ′(t2) ∧ σ(x) = σ′(x) ∧ σ(y) = σ′(y)}

The proof is immediate by the RGSim definition. Since the other
thread just guarantees R1 when executed in an environment satis-
fying G1, by the PAR rule of RGSim, we can get (D.1).

E. Verification of Boehm et al. Concurrent GC
E.1 The High-Level and Low-Level Machines

The high-level and low-level languages and state models are pre-
sented in Figures 14 and 15 respectively.

• High-level mutators can use x := y.id to read a field of an ob-
ject, x.id := E to write the value of E to a field of an object and
x := new() to allocate a new object. If the instruction x.id := E

updates a pointer field (i.e., id ∈ {pt1, . . . , ptm}), then it will be
transformed to a write barrier (shown in Figure 13). The write
barrier first modifies the pointer field and then sets the dirty
field. Here we use an auxiliary variable aux for each mutator
thread to record the current object that the mutator is updating.
We add aux only for the purpose of verification, which is write-
only and can be safely deleted after the proof is completed.
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S(x) = V′ [[E]]S = V same type(V,V′)
(x := E, (S,H)) −→ (skip, (S{x� V},H))

x �∈ dom(S) or [[E]]S =⊥ or ¬same type(S(x), [[E]]S)

(x := E, (S,H)) −→ abort

S(y) = l H(l)(id) = V S(x) = V′ same type(V,V′)

(x := y.id, (S,H)) −→ (skip, (S{x� V},H))

y �∈ dom(S) or S(y) �∈ dom(H) or x �∈ dom(S) or ¬same type(S(x),H(S(y))(id))

(x := y.id, (S,H)) −→ abort

S(x) = l H(l) = O [[E]]S = V O(id) = V′ same type(V,V′)

(x.id := E, (S,H)) −→ (skip, (S,H{l � O{id� V}}))

x �∈ dom(S) or S(x) �∈ dom(H) or [[E]]S =⊥ or ¬same type(H(S(x))(id), [[E]]S)

(x.id := E, (S,H)) −→ abort

l �∈ dom(H) l �= nil S(x) = l′

(x := new(), (S,H)) −→ (skip, (S{x� l},H � {l � {pt1 � nil, . . . , ptm � nil, data� 0}}))

¬(∃l.l �∈ dom(H) ∧ l �= nil) S(x) = l′

(x := new(), (S,H)) −→ (skip, (S{x� nil},H))

x �∈ dom(S) or ¬∃l.S(x) = l

(x := new(), (S,H)) −→ abort

(C, (S,H)) −→ (C′, (S′,H′))
(t.C, (Π � {t� S},H)) −→ (t.C′, (Π � {t� S′},H′))

(C, (S,H)) −→ abort
(t.C, (Π � {t� S},H)) −→ abort

(ti.Ci,Σ) −→ (ti.C
′
i,Σ

′) or (Σ,Σ′) ∈ AbsGCStep

(tgc.AbsGC�t1.C1�. . . ti.Ci . . .�tn.Cn,Σ) −→ (tgc.AbsGC�t1.C1�. . . ti.C′
i . . .�tn.Cn,Σ′)

(ti.Ci,Σ) −→ abort
(tgc.AbsGC�t1.C1�. . . ti.Ci . . .�tn.Cn,Σ) −→ abort

(a) Selected Operational Semantics Rules

root(t, S) � λΣ. Σ = (Π � {t� St},H) ∧ S = {l | ∃x.St(x) = l}
edge(l1, l2) � λΣ. Σ = (Π,H) ∧ ∃id ∈ {pt1, . . . , ptm}. H(l1)(id) = l2
path0(l1, l2) � λΣ. l1 = l2
pathk+1(l1, l2) � λΣ. ∃l3. edge(l1, l3)(Σ) ∧ pathk(l3, l2)(Σ)

path(l1, l2) � λΣ. ∃k. pathk(l1, l2)(Σ)

reachable(t, l) � λΣ. ∃S. root(t, S)(Σ) ∧ ∃l′ ∈ S. path(l′, l)(Σ) ∧ l �= nil
reachable(l) � ∃t ∈ [1..N ]. reachable(t, l)
AbsGCStep � {((Π,H), (Π,H′)) | ∀l. reachable(l)(Π,H) =⇒ H(l) = H′(l)}

(b) Definition of AbsGCStep

Figure 24. A High-level Garbage-Collected Machine

• A GC thread is introduced on the low-level which can use
privilege commands to control the mutator threads and manage
the heap, e.g., x := get root(y) allows the GC to read the
values of all the pointer variables in the thread y’s store at once
and free(x) allows to reclaim an object. The stop-the-world
phase can be implemented by atomic{C} in which the GC does
some work C without being interrupted by mutator threads.

• An object has m pointer fields and a data field from the high-
level view, whereas a concrete object has two auxiliary fields
color and dirty for the collection. We give each object a dirty
card whose value can be 0 (not dirty) or 1 (dirty). The color
field has three possible values and is used for two purposes: for
marking, we use BLACK for a marked object and WHITE for an
unmarked one; and for allocation, we use BLUE for an unallo-
cated object which will neither be traced nor be reclaimed, but
can be allocated later. New objects are created BLACK, and when
reclaiming an object, we just set its color to BLUE.

• The high-level language is typed in the sense that heap locations
and integers are regarded as distinct kinds of values. But on
the low-level machine, they are not distinguished to allow the
GC to perform pointer arithmetics. On the other hand, every
variable is given an extra bit to preserve its high-level type
information (0 for non-pointers and 1 for pointers), so that the
GC can easily get roots. Note that we do not provide infinite
heaps, instead there are only M valid high-level locations and
the low-level heap domain is [1..M ]. High-level mutators can
use nil for null pointers and it will be translated to 0 on the
low-level machine. We assume there is a bijective function from
high-level locations to low-level integers:

Loc2Int : Loc↔ [0..M ]

which satisfies Loc2Int(nil) = 0.

We present the high-level operational semantics rules and the
detailed definition of AbsGCStep in Figure 24. Here we use
same type(V,V′) to mean that the two values V and V′ are of
the same type (Int or Loc).
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[[n]](s,b) =

⎧⎨
⎩

n if b = 0 or b = 2
0 if b = 1 and n = 0
⊥ otherwise

[[x]](s,b) =

{
n if s(x) = (n, b′) and (b = b′ ∨ b = 2)
⊥ otherwise

[[E1 + E2]](s,b) =

{
n1 + n2 if [[E1]](s,b) = n1 and [[E2]](s,b) = n2 and (b = 0 ∨ b = 2)
⊥ otherwise

[[E1 = E2]](s,b) =

⎧⎨
⎩

true if [[E1]](s,b) = n1 and [[E2]](s,b) = n2 and n1 = n2 and (b = 0 ∨ b = 2)
false if [[E1]](s,b) = n1 and [[E2]](s,b) = n2 and n1 �= n2 and (b = 0 ∨ b = 2)
⊥ otherwise

[[is empty(x)]](s,b) =

⎧⎨
⎩

true if b = 0 and s(x) = ε
false if b = 0 and s(x) = n ::A
⊥ otherwise

Figure 25. Expression Evaluations on the Low-Level Machine

For the low-level machine, we need to prohibit mutators from
pointer arithmetics (although the GC is allowed to do so). Thus an
expression is evaluated (shown in Figure 25) under the store with
an extra bit b to indicate whether it is used as an object location
in the heap. When b = 2, we do not care about the usage of the
expression, and such an expression will be used in the GC code
since the GC has the privilege to use an integer as an address and
vice versa. We present part of the low-level operational semantics
rules in Figure 26.

E.2 The GC Code

int WHITE = 0;
int BLACK = 1;
int BLUE = 2;

Collection() {
local mstk: Seq(Int); // initial: EMPTY
while (true) {
Initialize();
Trace();
CleanCard();
atomic{ ScanRoot(); CleanCard(); }
Sweep();

}
}

Initialize() {
local i: [1..M], c: {BLACK, WHITE, BLUE};
i := 1;
while (i <= M) {
i.dirty := 0;
c := i.color;
if (c = BLACK) { i.color := WHITE; }
i := i + 1;

}
}

Trace() { // non-recursive
local t: [1..N], rt: Set(Int), i: [0..M];
t := 1;
while (t <= N) { // for each thread
rt := get_root(t);
foreach i in rt do {
MarkAndPush(i);

}
t := t + 1;
TraceStack();

}
}

TraceStack() {
local i: [1..M], j: [0..M];
while (!is_empty(mstk)) {
i := pop(mstk);
j := i.pt1; MarkAndPush(j);
...
j := i.ptm; MarkAndPush(j);

}
}

Mark(i) {
local c: {BLACK, WHITE, BLUE};
if (i != 0) {
c := i.color;
if (c = WHITE) {
i.color := BLACK;
push(i, mstk);

}
}

}

CleanCard() {
local i: [1..M], c: {BLACK, WHITE, BLUE}, d: {1, 0};
i := 1;
while (i <= M) {
c := i.color;
d := i.dirty;
if (d = 1) {
i.dirty := 0;
if (c = BLACK) {
push(i, mstk);

}
}
i := i + 1;

}
TraceStack();

}

ScanRoot() {
local t: [1..N], rt: Set(Int), i: [0..M];
t := 1;
while (t <= N) {
rt := get_root(t);
foreach i in rt do {
MarkAndPush(i);

}
t := t + 1;

}
}
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tid ∈ [1..N ] s(x) = (n′, b) [[E]](s,b) = n

(tid.(x := E), (s, h)) −→ (tid.skip, (s{x� (n, b)}, h))
tid ∈ [1..N ] (x �∈ dom(s) or [[E]](s,snd(s(x)) =⊥)

(tid.(x := E), (s, h)) −→ abort

tid = tgc s(x) = (n′, b) [[E]](s,2) = n

(tid.(x := E), (s, h)) −→ (tid.skip, (s{x� (n, b)}, h))
tid = tgc (x �∈ dom(s) or [[E]](s,2) =⊥)

(tid.(x := E), (s, h)) −→ abort

s(y) = (ny , 1) h(ny)(id) = n s(x) = (nx, b) id ∈ {pt1, . . . , ptm} =⇒ b = 1 id ∈ {data} =⇒ b = 0

(x := y.id, (s, h)) −→ (skip, (s{x� (n, b)}, h))

y �∈ dom(s) or fst(s(y)) �∈ dom(h) or snd(s(y)) �= 1
or x �∈ dom(s) or id ∈ {pt1, . . . , ptm} =⇒ snd(s(x)) �= 1 or id ∈ {data} =⇒ snd(s(x)) �= 0

(x := y.id, (s, h)) −→ abort

s(x) = (n, 1) h(n) = o id ∈ {pt1, . . . , ptm} =⇒ [[E]](s,1) = n′
id ∈ {data} =⇒ [[E]](s,0) = n′ id ∈ {color, dirty} =⇒ [[E]](s,2) = n′

(x.id := E, (s, h)) −→ (skip, (s, h{n� o{id� n′}}))

x �∈ dom(s) or fst(s(x)) �∈ dom(h) or snd(s(x)) �= 1 or id ∈ {pt1, . . . , ptm} =⇒ [[E]](s,1) =⊥
or id ∈ {data} =⇒ [[E]](s,0) =⊥ or id ∈ {color, dirty} =⇒ [[E]](s,2) =⊥

(x.id := E, (s, h)) −→ abort

tid = tgc s(y) = (t, 0) π(t) = st s(x) = (n′, 0) S = {n | ∃x.st(x) = (n, 1)} s′ = s{x� (S, 0)}
(tid.(x := get root(y)), (π � {tid� s}, h)) −→ (tid.skip, (π � {tid� s′}, h))

tid �= tgc or x �∈ dom(s) or snd(s(x)) �= 0 or y �∈ dom(s) or snd(s(y)) �= 0 or fst(s(y)) �∈ dom(π)

(tid.(x := get root(y)), (π � {tid� s}, h)) −→ abort

x ∈ dom(s) s(y) = ({}, 0)
(foreach x in y do C, (s, h)) −→ (skip, (s, h))

x �∈ dom(s) or fst(s(y)) �∈ Set(Val) or snd(s(y)) �= 0

(foreach x in y do C, (s, h)) −→ abort

s(x) = (n, b) s(y) = ({n1, . . . , nk}, 0)
(foreach x in y do C, (s, h)) −→ (C; y := y − {x}; foreach x in y do C, (s{x� (n1, b)}, h))

(C, (s, h)) −→∗ (skip, (s′, h′))
(atomic{C}, (s, h)) −→ (skip, (s′, h′))

(C, (s, h)) −→∗ abort
(atomic{C}, (s, h)) −→ abort

tid ∈ [1..N ] s(x) = (n′, 1) h(n)(color) = BLUE

(tid.(x := new()), (s, h)) −→ (skip, (s{x� (n, 1)}, h{n� {pt1 � 0, . . . , ptm � 0, data� 0, color� BLACK, dirty� 0}}))

tid ∈ [1..N ] s(x) = (n′, 1) ¬(∃n. h(n)(color) = BLUE)

(tid.(x := new()), (s, h)) −→ (skip, (s{x� (0, 1)}, h))
tid �∈ [1..N ] or x �∈ dom(s) or snd(s(x)) �= 1

(tid.(x := new()), (s, h)) −→ abort

s(x) = (n, 1) h(n) = o

(free(x), (s, h)) −→ (skip, (s, h{n� o{color� BLUE}}))
x �∈ dom(s) or fst(s(x)) �∈ dom(h) or snd(s(x)) �= 1

(free(x), (s, h)) −→ abort

s(x) = (n′, b) s(y) = (A, 0)

(push(x, y), (s, h)) −→ (skip, (s{y � (n′ ::A, 0)}, h))

x �∈ dom(s) or y �∈ dom(s) or fst(s(y)) �∈ Seq(Val) or snd(s(y)) �= 0

(push(x, y), (s, h)) −→ abort

s(x) = (n′, b) s(y) = (n ::A, 0)

(x := pop(y), (s, h)) −→ (skip, (s{x� (n, b), y � (A, 0)}, h))
x �∈ dom(s) or ¬∃n,A.s(y) = (n ::A, 0)

(x := pop(y), (s, h)) −→ abort

Figure 26. Selected Operational Semantics Rules on the Low-Level Machine
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Sweep() {
local i: [1..M], c: {BLACK, WHITE, BLUE};
i := 1;
while (i <= M) {
c := i.color;
if (c = WHITE) {
free(i); // append a node to the free list

}
i := i + 1;

}
}

E.3 The Logic for the GC thread

E.3.1 Assertions

We define the semantics of the assertions in Figures 27 and 28. The
logical variable mapping i maps a logical variables to a value and
a bit to indicate whether it is a pointer (like the store mapping).
We lift the original rely and guarantee conditions over state pairs to
LState× LvMap pairs with identity transitions on LvMap.

As shown in Figure 27(d), we use f1 � f2 as usual to denote
the union of two partial functions when their domains are disjoint.
Since heaps are higher-order partial functions, they can be trans-
formed to an uncurried form by the uncurry operator. We then use
h1 ⊕ h2 to denote the union when their domains of uncurry(h1)
and uncurry(h2) are disjoint. The disjoint union of states is defined
based on the disjoint unions of the shared heaps and the stores for
each thread.

E.3.2 Inference Rules

We present the inference rules for reasoning about sequential pro-
grams in Figure 29 following separation logic.

The concurrency rules are presented in Figure 30, where stabil-
ity is defined in a traditional way:

Definition 35 (Stability). Sta(p, a) holds iff, for all σ, i, σ′ and i′,
if p(σ, i) and a((σ, i), (σ′, i′)), then p(σ′, i′).

E.3.3 Soundness

The semantics for the judgment {p}C{q} is standard, except we
also require that no external events are generated.

Definition 36 (Seq-Semantics). |= {p}C{q} iff, for any σ and i
such that p(σ, i), the followings are true:

1. ¬((C, σ) −→∗ abort);

2. ¬∃C′, σ′, e. ((C, σ) e−→∗ (C′, σ′));

3. if (C, σ) −→∗ (skip, σ′), then q(σ′, i).

Lemma 37 (Seq-Soundness). If {p}C{q}, then |= {p}C{q}.
Lemma 37 is proved by induction over the derivation of the

judgment {p}C{q}. The whole proof consists of the soundness
proof for each individual rules. Here we only present the proofs for
soundness of the GETRT, FREE and FOREACH rules. Others
are following previous works on sequential separation logic and
omitted here.

Lemma 38 (GETRT-Sound). Let p � x, y; • � x = X ′ ∧ 1 ≤
y ≤ N and q � x, y; • � x = X ∧ 1 ≤ y ≤ N ∧ root(y,X). If
{p}x := get root(y){q}, then |= {p}x := get root(y){q}.
Proof:. By Definition 36, we need to prove that, for all σ and i
such that p(σ, i), we have

(i) ¬((x := get root(y), σ) −→∗ abort);

(ii) ¬∃C′, σ′, e. ((x := get root(y), σ) e−→∗ (C′, σ′));

(iii) if (x := get root(y), σ) −→∗ (skip, σ′), then q(σ′, i).

Suppose σ = (π′ � {tgc � s}, h). Since σ |= p, there exists t and
n′ such that s(y) = (t, 0), t ∈ [1..N ], s(x) = (n′, 0) and π′ =
π � {t � st}. Then (x := get root(y), σ) −→ (skip, σ′), where
σ′ = (π � {tgc � s′, t � st}, h), S = {n | ∃x.st(x) = (n, 1)}
and s′ = s{x � (S, 0)}. Thus (i) and (ii) are proved. Since aux
is an auxiliary variable added only for proof, it is not counted in S
actually when the program is executed. Thus q(σ′, i), i.e., (iii) is
proved. �

Lemma 39 (FREE-Sound). Let p � •;x � x.color �→
and q � •;x � x.color �→ BLUE. If {p}free(x){q}, then
|= {p}free(x){q}.
Proof:. By Definition 36, we need to prove that, for all σ and i
such that p(σ, i), we have

(i) ¬((free(x), σ) −→∗ abort);

(ii) ¬∃C′, σ′, e. ((free(x), σ) e−→∗ (C′, σ′));

(iii) if (free(x), σ) −→∗ (skip, σ′), then q(σ′, i).

Suppose σ = (π � {tgc � s}, h). Since σ |= p, there exists n and
o such that s(x) = (n, 1) and h(n) = o. Then (free(x), σ) −→
(skip, σ′), where σ′ = (π � {tgc � s}, h{n � o{color �
BLUE}}). Thus (i) and (ii) are proved. Also q(σ′, i) holds, i.e., (iii)
is proved. �

Suppose the (FOREACH) rule is applied to derive {p ∗
own(x)}foreach x in y do C{p ∗ own(x) ∧ y = φ}. We want to
prove |= {p ∗ own(x)}foreach x in y do C{p ∗ own(x)∧ y = φ}.
By inversion of the (FOREACH) rule, we know p =⇒ ownnp(y)
and {p ∗ own(x) ∧ x ∈ y}C; y := y − {x}{p ∗ own(x)}.
Lemma 40 (FOREACH-Sound). If p =⇒ ownnp(y) and |= {p ∗
own(x) ∧ x ∈ y}C; y := y − {x}{p ∗ own(x)}, then |= {p ∗
own(x)}foreach x in y do C{p ∗ own(x) ∧ y = φ}.
Proof:. By Definition 36, we need to prove that, for all n ≥ 0, for
all σ and i such that (p ∗ own(x))(σ, i), we have

(i) ¬((foreach x in y do C, σ) −→n abort);

(ii) ¬∃C′, σ′, e. ((foreach x in y do C, σ)
e−→n (C′, σ′));

(iii) if (foreach x in y do C, σ) −→n (skip, σ′), then (p∗own(x)∧
y = φ) (σ′, i).

Suppose σ = (π � {tgc � s}, h). Since σ |= p ∗ own(x) and
p =⇒ ownnp(y), we know x ∈ dom(s) and s(y) = ( , 0). Per-
form induction over n.
Base Case: When n = 0, it is trivial. When n = 1, as-
sume there’s a type checker ensuring the value of y is a set
(or we can extend the assertion language to know this), we can
prove (i) and (ii) from the operational semantics of FOREACH.
If (foreach x in y do C, σ) −→ (skip, σ′), then σ′ = σ and
s(y) = ({}, 0). Thus (p ∗ own(x) ∧ y = φ)(σ′, i), i.e., (iii) is
proved.
Inductive Step: Assume (i), (ii) and (iii) are true when n ≤ m,
m ≥ 1. From the operational semantics of FOREACH, we know
¬((foreach x in y do C, σ) −→ abort) and
¬∃C′, σ′, e. ((foreach x in y do C, σ)

e−→ (C′, σ′)).
By the assumption, (i) and (ii) are true when n = m+ 1.
If (foreach x in y do C, σ) −→ m+1 (skip, σ′), then s(y) =
({n1, . . . , nk}, 0) and

(foreach x in y do C, σ) −→
(C; y := y − {x}; foreach x in y do C, σ1)
where σ1 = (π � {tgc � s{x� (n1, b)}}, h)
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(PVarList) O ::= • | x,O
(LvMap) i ∈ LVar → LVal × {0, 1}

(StateAssert) p, q ∈ LState × LvMap → Prop
(Action) a,R,G ∈ P((LState × LvMap)× (LState × LvMap)) → Prop

(a) Syntax of Assertions

B � λ(σ, i). σ = (π, h) ∧ [[B]](π,i,2) = true
emph � λ(σ, i). σ = (π, h) ∧ dom(h) = φ

t.ownnp(x) � λ(σ, i). σ = (π, h) ∧ π(t) = s ∧ dom(s) = {x} ∧ s(x) = ( , 0)

t.ownp(x) � λ(σ, i). σ = (π, h) ∧ π(t) = s ∧ dom(s) = {x} ∧ s(x) = ( , 1)

t.own(x) � λ(σ, i). σ = (π, h) ∧ π(t) = s ∧ dom(s) = {x}
p ∗ q � λ(σ, i). ∃σ1, σ2. σ1 ⊕ σ2 = σ ∧ p(σ1, i) ∧ q(σ2, i)

E1.id �→ E2 � λ(σ, i). σ = (π, h) ∧ ∃n, n′. [[E1]](π,i,1) = n′ ∧ dom(h) = {n′} ∧ h(n′)(id) = n
∧ ([[E2]](π,i,1) = n ∧ id = {pt1, . . . , ptm} ∨ [[E2]](π,i,0) = n ∧ id = data ∨ [[E2]](π,i,2) = n ∧ (id = color ∨ id = dirty))

E1.id ↪→ E2 � (E1.id �→ E2) ∗ true
∃X.p � λ(σ, i). ∃v. p(σ, i{X � v})
O0;O1 � p � (ownnp(x1) ∗ . . . ∗ ownnp(xi) ∗ ownp(y1) ∗ . . . ∗ ownp(yj)) ∧ p where O0 = x1, . . . , xi, • and O1 = y1, . . . , yj , •
x ∈ S � ∃X.S = X � {x}
�x∈S .p(x) � S = φ ∧ emp ∨ ∃z.(S = {z} � S′) ∧ (�x∈S′ .p(x)) ∗ p(z)

(b) State Assertions

p � q � λ((σ, i), (σ′, i′)). p(σ, i) ∧ q(σ′, i) ∧ i = i′
[p] � λ((σ, i), (σ′, i′)). σ = σ′ ∧ i = i′ ∧ p(σ, i)

(c) Actions

f1⊥f2 � dom(f1) ∩ dom(f2) = φ

f1 � f2 �
{

f1 ∪ f2 if f1⊥f2
⊥ otherwise

h1 ⊕ h2 �
{

curry(uncurry(h1) ∪ uncurry(h2)) if uncurry(h1)⊥uncurry(h2)
⊥ otherwise

σ1 ⊕ σ2 �

⎧⎪⎨
⎪⎩

({t� (π1(t) � π2(t)) | t ∈ dom(π1)}, h1 ⊕ h2)
if σ1 = (π1, h1) ∧ σ2 = (π2, h2) ∧ dom(π1) = dom(π2)
∧ ∀t ∈ dom(π1). π1(t)⊥π2(t) ∧ uncurry(h1)⊥uncurry(h2)

⊥ otherwise

(d) Disjoint Unions

Figure 27. Semantics of Basic Assertions

Then (p ∗ own(x) ∧ x ∈ y) (σ1, i). If

(C; y := y − {x}; foreach x in y do C, σ1) −→∗

(foreach x in y do C, σ2)

then (p ∗ own(x)) (σ2, i). Thus if

(foreach x in y do C, σ2) −→k (skip, σ′)

where k ≤ m, then (p ∗ own(x) ∧ y = φ)(σ′, i). (iii) is proved. �
We have defined the semantics of R;G � {p}C{q} in Defi-

nition 24 and 25, here we only extend it with the logical variable
mapping.

Lemma 41. If (C, σ,R) guaranteesn+1 G, there does not exist

j such that j < n and (C, σ)
R�−→ jabort.

Theorem 42 (Soundness). If R;G � {p}C{q}, then R;G |=
{p}C{q}.

Theorem 42 is proved by induction over the derivation of the
judgment R;G � {p}C{q}. The whole proof consists of the
soundness proof for each individual rules. Here we only present
the proofs for soundness of the ATOMIC rules. Others are similar
to the traditional RG logic and omitted here.

Suppose the ATOMIC rule is applied to derive

R;G � {p}atomic{C}{q}.
We want to proveR;G |= {p}atomic{C}{q}. By inversion of the
ATOMIC rule, we know p =⇒ p′, {p′}C{q′}, p′ � q′ =⇒ G,
q′ =⇒ q and Sta({p, q},R).
Lemma 43 (ATOMIC-Sound). If p =⇒ p′, |= {p′}C{q′},
p′ � q′ =⇒ G, q′ =⇒ q and Sta({p, q},R), then R;G |=
{p}atomic{C}{q}.
Proof:. By Definition 25, we need to prove that, for all σ and i
such that p (σ, i), we have

(i) if (atomic{C}, σ) R�−→∗(skip, σ′), then q (σ′, i);

(ii) ∀n. (atomic{C}, σ,R) guaranteesn G.

Since (atomic{C}, σ) R�−→ ∗(skip, σ′), there exist σ1 and σ2

such that (atomic{C}, σ1) −→ (skip, σ2), (σ, σ1) ∈ R∗ and
(σ2, σ

′) ∈ R∗. Since Sta(p,R), we know p (σ1, i). Since p =⇒
p′, we know p′ (σ1, i). By the definition for the semantics of se-
quential rules, we know q′ (σ2, i). Then q (σ2, i). Since Sta(q,R),
we know q (σ′, i). Thus (i) is proved.
If p′ (σ1, i) and (atomic{C}, σ1) −→ (skip, σ2), then q′ (σ2, i),
thus (σ1, σ2) ∈ G because p′ � q′ =⇒ G. We can prove (ii) by
induction over n. �
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obj(x) � x.pt1 �→ ∗ . . . ∗ x.ptm �→ ∗ x.data �→ ∗ x.color �→ ∗ x.dirty �→
blueobj(x) � x.pt1 �→ ∗ . . . ∗ x.ptm �→ ∗ x.data �→ ∗ x.color �→ BLUE ∗ x.dirty �→
newobj(x) � x.pt1 �→ 0 ∗ . . . ∗ x.ptm �→ 0 ∗ x.data �→ 0 ∗ x.color �→ BLACK ∗ x.dirty �→ 0

black(x) � x.color ↪→ BLACK

white(x) � x.color ↪→ WHITE

dirty(x) � x.dirty ↪→ 1

not blue(x) � ∃c. (x.color ↪→ c ∧ c �= BLUE)

not white(x) � ∃c. (x.color ↪→ c ∧ c �= WHITE)

not dirty(x) � x.dirty ↪→ 0

instk(n,A) � ∃n′, A′. A = n′ ::A′ ∧ (n = n′ ∨ instk(n,A′))
stk black(A) � ∀x. instk(x,A) =⇒ black(x)
root(t, S) � λ(σ, i). σ = (π � {t� st}, h) ∧ S = {n | ∃x.st(x) = (n, 1) ∧ x �= aux}
edge(x, y) � ∃id ∈ {pt1, . . . , ptm}. (x.id ↪→ y)

pathk(x, y) �
{

x = y if k = 0
∃z. edge(x, z) ∧ pathk−1(z, y) if k > 0

path(x, y) � ∃k. pathk(x, y)
reachable(t, x) � ∃S, y. root(t, S) ∧ y ∈ S ∧ path(y, x) ∧ x �= 0

reachable(x) � ∃t ∈ [1..N ]. reachable(t, x)
wfstate � �x∈[1..M ].obj(x) ∗ true ∧ (∀x. reachable(x) =⇒ not blue(x))

white edge(x, y) � ∃id ∈ {pt1, . . . , ptm}. (x.id ↪→ y ∧ white(y))

white pathk(x, y) �
{

x = y if k = 0
∃z. white edge(x, z) ∧ white pathk−1(z, y) if k > 0

white path(x, y) � ∃k. white pathk(x, y)
wwp(x, y) � white(x) ∧ white path(x, y)
rt wp(t, x) � ∃S, y. root(t, S) ∧ y ∈ S ∧ wwp(y, x)
rt wp(x) � ∃t ∈ [1..N ]. rt wp(t, x)
dt bwp(x, y) � black(x) ∧ dirty(x) ∧ white path(x, y)
stk bwp(x, y,A) � black(x) ∧ instk(x,A) ∧ white path(x, y)
reach inv � ∀x. reachable(x) ∧ white(x) =⇒ rt wp(x) ∨ ∃x′.dt bwp(x′, x)
reach stk(A) � ∀x. reachable(x) ∧ white(x) =⇒ rt wp(x) ∨ ∃x′.dt bwp(x′, x) ∨ ∃x′.stk bwp(x′, x, A)

reach rtnw stk(A) � ∀x. reachable(x) ∧ white(x) =⇒ ∃x′.dt bwp(x′, x) ∨ ∃x′.stk bwp(x′, x, A)

popped bwp(x, y, Sid) � black(x) ∧ ∃id, z. id ∈ Sid ⊆ {pt1, . . . , ptm} ∧ x.id ↪→ z ∧ wwp(z, y)
reach tomk(A, xp, Sid, xw) � ∀x. reachable(x) ∧ white(x)

=⇒ rt wp(x) ∨ ∃x′. dt bwp(x′, x) ∨ ∃x′. stk bwp(x′, x, A) ∨ popped bwp(xp, x, Sid) ∨ wwp(xw, x)

reach black � ∀x. reachable(x) =⇒ black(x)
ptfd sta(x.id, y) � ∃n. x.id ↪→ n ∧ (y = n ∨ dirty(x) ∨ n = 0 ∨ ∃t, x′. (t.aux = x ∧ t.x′ = n ∧ t.ownp(x′)))
newobj sta(x) � obj(x) ∗ true ∧ black(x) ∧ ∀id ∈ {pt1, . . . , ptm}. ptfd sta(x.id, 0)
rt not white(t) � ∃S. root(t, S) ∧ ∀n ∈ S. not white(n)
rt not white � ∀t ∈ [1..N ]. rt not white(t)
mark rt till(n) � ∀t ∈ [1..n]. rt not white(t)
clear color till(n) � ∀x ∈ [1..n]. (x.color ↪→ BLACK =⇒ newobj sta(x))
clear dirty till(n) � ∀x ∈ [1..n]. not dirty(x)
reclaim till(n) � ∀x ∈ [1..n]. not white(x)

NOTE: Here we use for an unspecified integer n that 0 ≤ n ≤ M . Some assertions are already shown in Figure 19.

Figure 28. Useful Assertions for Verifying Boehm et al. GC

E.4 Proofs of the GC Code

Since each instruction in the GC code is executed atomically, we
need to stabilize the pre and post conditions when verifying it (re-
quired by the ATOMIC rule). For example, when reading a pointer
field of an object to a local variable, the postcondition should be
stabilized since mutators might update the field.

Rgc;Ggc �
{ ∃X,Y. j = Y ∧ i.pt1 ↪→ X

}
j := i.pt1;{ ∃X. j = X ∧ ptfd sta(i.pt1, X)

}

where ptfd sta(i.pt1, X) says the pt1 field of i was once X and
if it is not X now, it must have been updated by a write barrier.
Similarly, when reading the color of an object, the postcondition
should take into account the mutators’ possible update of the color
field in allocation and the updates of pointer fields after allocation.

Rgc;Ggc �

{ ∃X,Y. c = X ∧ i.color ↪→ Y
}

c := i.color;{ ∃X,Y. c = X ∧ i.color ↪→ Y
∧ (X = Y ∨X = BLUE ∧ newobj sta(i))

}

where newobj sta(i) says i points to an new object whose color
field is BLACK and all the pointer fields were once 0. Both the
predicates ptfd sta and newobj sta are defined in Figure 28.

We present the key proof of each module in Figures 31, 32,
33, 34, 35, 36 and 37. Figure 28 defines the assertions used in the
proofs.

In Initialize() (shown in Figure 31), the GC scans each
object in the heap and colors the black object to white. We use
clear color till(n) to mean the GC has done color-clearing from
1 to n, but there might still be black objects since the mutators
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{O0;O1 � x = X′ ∧X = E ∧ emph}x := E{O0;O1 � x = X ∧ emph}
(ASSN)

{O0;O1 � x = X ∧ y.id �→ Y }x := y.id{O0;O1 � x = Y ∧ y.id �→ Y } (READ)

{O0;O1 � x.id �→ ∧X = E}x.id := E{O0;O1 � x.id �→ X} (WRITE)

{x, y; • � x = X′ ∧ 1 ≤ y ≤ N}x := get root(y){x, y; • � x = X ∧ 1 ≤ y ≤ N ∧ root(y,X)} (GETRT)

{•;x � x.color �→ }free(x){•;x � x.color �→ BLUE} (FREE)

{y,O0;O1 � x = X ∧ y = Y }push(x, y){y,O0;O1 � x = X ∧ y = X ::Y } (PUSH)

{y,O0;O1 � x = X ∧ y = X′ ::Y }x := pop(y){y,O0;O1 � x = X′ ∧ y = Y } (POP)

p =⇒ B = B {p ∧B}C1{q} {p ∧ ¬B}C2{q}
{p}if (B) C1 else C2{q}

(IF)
p =⇒ B = B {p ∧B}C{p}
{p}while (B){C}{p ∧ ¬B} (WHILE)

p =⇒ ownnp(y) {p ∗ own(x) ∧ x ∈ y}C; y := y − {x}{p ∗ own(x)}
{p ∗ own(x)}foreach x in y do C{p ∗ own(x) ∧ y = φ} (FOREACH)

{p}skip{p} (SKIP)
{p}C1{R} {R}C2{q}

{p}C1;C2{q}
(SEQ)

{p}C{q}
{∃X.p}C{∃X.q} (EXISTS)

{p}C{q}
{p ∗R}C{q ∗R} (FRM)

{p}C{q} {p′}C{q′}
{p ∧ p′}C{q ∧ q′} (CONJ)

{p}C{q} {p′}C{q′}
{p ∨ p′}C{q ∨ q′} (DISJ)

p =⇒ p′ {p′}C{q′} q′ =⇒ q

{p}C{q} (CONSEQ)

Figure 29. Inference Rules - Sequential Rules

p =⇒ p′ {p′}C{q′} p′ � q′ =⇒ G q′ =⇒ q Sta({p, q},R)

R;G � {p}atomic{C}{q} (ATOMIC)

p =⇒ B = B R;G � {p ∧B}C1{q} R;G � {p ∧ ¬B}C2{q}
R;G � {p}if (B) C1 else C2{q}

(P-IF)

p =⇒ B = B R;G � {p ∧B}C{p}
R;G � {p}while (B){C}{p ∧ ¬B} (P-WHILE)

p =⇒ ownnp(y) R;G � {p ∗ own(x) ∧ x ∈ y}C; y := y − {x}{p ∗ own(x)}
R;G � {p ∗ own(x)}foreach x in y do C{p ∗ own(x) ∧ y = φ} (P-FOREACH)

R;G � {p}C1{r} R;G � {r}C2{q}
R;G � {p}C1;C2{q}

(P-SEQ)

Figure 30. Inference Rules - Concurrency Rules

{{wfstate}}
Initialize() {

local i: [1..M], c: {BLACK, WHITE, BLUE};
i := 1;

Loop Invariant: {{(wfstate ∧ clear color till(i− 1) ∧ 1 ≤ i ≤ M + 1) ∗ ownnp(c)}}
while (i <= M) {

i.dirty := 0;
c := i.color;
if (c = BLACK) {

i.color := WHITE;
}
i := i + 1;

}
}
{{wfstate ∧ reach inv}} using Lemma 46

Figure 31. Proof Outline of Initialize()
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{{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}}
Trace() {

local t: [1..N], rt: Set(Int), i: [0..M];
t := 1;

Loop Invariant: {{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε) ∗ (ownnp(t) ∧ 1 ≤ t ≤ N + 1) ∗ ownnp(rt) ∗ ownp(i)}}
while (t <= N) {

rt := get_root(t);
Foreach Invariant: {{FInv}}
foreach i in rt do {
{{FInv ∧ i ∈ rt}}
MarkAndPush(i);
{{FInv ∧ i ∈ rt}}

}
t := t + 1;
{{∃X. (wfstate ∧ reach stk(X) ∧ stk black(X)) ∗ (ownnp(mstk) ∧ mstk = X) ∗ (ownnp(t) ∧ 1 ≤ t ≤ N + 1) ∗ ownnp(rt) ∗ ownp(i)}}
TraceStack();
{{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε) ∗ (ownnp(t) ∧ 1 ≤ t ≤ N + 1) ∗ ownnp(rt) ∗ ownp(i)}}

}
}
{{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}}

where FInv � ∃X. (wfstate ∧ reach stk(X) ∧ stk black(X)) ∗ (ownnp(mstk) ∧ mstk = X)
∗ (ownnp(t) ∧ 1 ≤ t ≤ N) ∗ (ownnp(rt) ∧ ∀n ∈ rt. 0 ≤ n ≤ M) ∗ ownp(i)

Figure 32. Proof Outline of Trace()

{{∃X. (wfstate ∧ reach stk(X) ∧ stk black(X)) ∗ (ownnp(mstk) ∧ mstk = X)}}
TraceStack() {

local i: [1..M], j: [0..M];
Loop Invariant: {{∃X. (wfstate ∧ reach stk(X) ∧ stk black(X)) ∗ (ownnp(mstk) ∧ mstk = X) ∗ ownp(i) ∗ ownp(j)}}
while (!is_empty(mstk)) {

i := pop(mstk);
{{∃X′. (wfstate ∧ reach stk(i :: X′) ∧ stk black(X′) ∧ obj(i)) ∗ (ownnp(mstk) ∧ mstk = X′) ∗ ownp(j)}}
j := i.pt1;
{{∃X′. (wfstate ∧ reach stk(i :: X′) ∧ stk black(X′) ∧ obj(i) ∧ ptfd sta(i.pt1, j) ∧ (j = 0 ∨ obj(j))) ∗ (ownnp(mstk) ∧ mstk = X′)}}{ ∃X′, i. (wfstate ∧ reach tomk(X′, i, {pt2, . . . , ptm}, j) ∧ stk black(X′) ∧ (j = 0 ∨ obj(j)))

∗ (ownnp(mstk) ∧ mstk = X′) ∗ (ownp(i) ∧ 1 ≤ i = i ≤ M)

}
using Lemma 47

MarkAndPush(j);{ ∃X′, i. (wfstate ∧ reach tomk(X′, i, {pt2, . . . , ptm}, 0) ∧ stk black(X′) ∧ (j = 0 ∨ not white(j)))
∗ (ownnp(mstk) ∧ mstk = X′) ∗ (ownp(i) ∧ 1 ≤ i = i ≤ M)

}
...
j := i.ptm; MarkAndPush(j);
{{∃X′. (wfstate ∧ reach tomk(X′, i, φ, 0) ∧ stk black(X′) ∧ (j = 0 ∨ not white(j))) ∗ (ownnp(mstk) ∧ mstk = X′)}}

}
}
{{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}}

Figure 33. Proof Outline of TraceStack()

{{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}}
CleanCard() {

local i: [1..M], c: {BLACK, WHITE, BLUE}, d: {1, 0};
i := 1;

Loop Invariant: {{∃X. (wfstate ∧ reach stk(X) ∧ stk black(X)) ∗ (ownnp(mstk) ∧ mstk = X) ∗ (ownp(i) ∧ 1 ≤ i ≤ M + 1) ∗ ownnp(c) ∗ ownnp(d)}}
while (i <= M) {

c := i.color;
d := i.dirty;
if (d = 1) {

i.dirty := 0;
if (c = BLACK) {

push(i, mstk);
}

}
i := i + 1;

}
{{∃X. (wfstate ∧ reach stk(X) ∧ stk black(X)) ∗ (ownnp(mstk) ∧ mstk = X) ∗ ownp(i) ∗ ownnp(c) ∗ ownnp(d)}}
TraceStack();
{{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = φ) ∗ ownp(i) ∗ ownnp(c) ∗ ownnp(d)}}

}
{{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}}

Figure 34. Proof Outline of CleanCard()
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{{(wfstate ∧ reach inv) ∗ (ownnp(mstk) ∧ mstk = ε)}}
ScanRoot() {

local t: [1..N], rt: Set(Int), i: [0..M];
t := 1;

Loop Invariant:
{{∃X. (wfstate ∧ reach stk(X) ∧ stk black(X) ∧mark rt till(t− 1) ∧ 1 ≤ t ≤ N + 1) ∗ (ownnp(mstk) ∧ mstk = X) ∗ ownp(i) ∗ ownnp(rt)}}
while (t <= N) {

rt := get_root(t);
Foreach Invariant:{ ∃X,Y. (wfstate ∧ reach stk(X) ∧ stk black(X) ∧mark rt till(t− 1) ∧ 1 ≤ t ≤ N ∧ root(t, Y ) ∧ ∀n ∈ (Y − rt). not white(n) ∧ rt ⊆ Y )

∗ (ownnp(mstk) ∧ mstk = X) ∗ ownp(i)

}

foreach i in rt do {
MarkAndPush(i);

}
t := t + 1;

}
}
{{∃X. (wfstate ∧ reach rtnw stk(X) ∧ stk black(X)) ∗ (ownnp(mstk) ∧ mstk = X)}}

Figure 35. Proof Outline of ScanRoot() in an Atomic Block

{{∃X. (wfstate ∧ reach rtnw stk(X) ∧ stk black(X)) ∗ (ownnp(mstk) ∧ mstk = X)}}
CleanCard() {

local i: [1..M], c: {BLACK, WHITE, BLUE}, d: {1, 0};
i := 1;

Loop Invariant:
{{∃X. (wfstate ∧ reach rtnw stk(X) ∧ stk black(X) ∧ clear dirty till(i− 1) ∧ 1 ≤ i ≤ M + 1) ∗ (ownnp(mstk) ∧ mstk = X) ∗ ownnp(c) ∗ ownnp(d)}}
while (i <= M) {

c := i.color;
d := i.dirty;
if (d = 1) {

i.dirty := 0;
if (c = BLACK) {

push(i, mstk);
}

}
i := i + 1;

}
{{∃X. (wfstate ∧ reach rtnw stk(X) ∧ stk black(X) ∧ clear dirty till(M)) ∗ (ownnp(mstk) ∧ mstk = X) ∗ ownnp(c) ∗ ownnp(d)}}
TraceStack();

}
{{(wfstate ∧ reach black) ∗ (ownnp(mstk) ∧ mstk = φ)}}

Figure 36. Verification of CleanCard() in an Atomic Block

{{wfstate ∧ reach black}}
Sweep() {

local i: [1..M], c: {BLACK, WHITE, BLUE};
i := 1;

Loop Invariant: {{(wfstate ∧ reach black ∧ reclaim till(i− 1) ∧ 1 ≤ i ≤ M + 1) ∗ ownnp(c)}}
while (i <= M) {

c := i.color;
if (c = WHITE) {

free(i);
}
i := i + 1;

}
}
{{wfstate ∧ reach black ∧ reclaim till(M)}}

Figure 37. Proof Outline of Sweep()
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could allocate an black object after the GC’s clearing. When all the
objects’ color has been “cleared”, we know reach inv holds.

Lemma 44. wfstate ∧ clear color till(M) =⇒ reach inv.

When the object i is white, MarkAndPush(i) colors it black
and pushes it onto the mark stack. Since this module will be called
several times, we use unified pre and post conditions.

Rgc;Ggc �

{ ∃X. wfstate ∧ reach tomk(X,xp, Sid, i)
∧ stk black(X) ∧ (i = 0 ∨ obj(i))

}

MarkAndPush(i);{ ∃X. wfstate ∧ reach tomk(X,xp, Sid, 0)
∧ stk black(X) ∧ (i = 0 ∨ not white(i))

}

(E.1)
Here reach tomk(A, xp, Sid, xw) means, any reachable white ob-
ject x must satisfy one of the following conditions:

• rt wp(x): x is reachable from a white root by a white path (i.e.,
all the objects in the path are white);

• ∃x′. dt bwp(x′, x): x is reachable from a dirty black object by
a white path;

• ∃x′. stk bwp(x′, x, A): x is reachable from a black object by a
white path and that object is on the stack A;

• popped bwp(xp, x, Sid): x is reachable from the black object
xp by a white path, but the first edge in the path (i.e., the edge
starts from xp) must be a field in Sid.

• wwp(xw, x): x is reachable from xw by a white path and xw is
white as well.

We can find that the first two cases are the same as in reach inv.
The third case will be useful during tracing when some objects have
been colored black and pushed onto the stack. We define reach stk
to express that only these three cases are satisfied for reachable
white objects. We will discuss the uses of the last two cases later.

Trace() in the concurrent mark-phase (Figure 32) first gets
every mutator thread’s root set, marks and pushes every root object,
and then calls the module TraceStack() to perform the depth-first
traversal. We need the following two lemmas to relate the unified
pre/post conditions of MarkAndPush(i) and the actual pre/post
conditions when calling the module.

Lemma 45. reach stk(X) =⇒ reach tomk(X, 0, φ, i).

Lemma 46. reach tomk(X, 0, φ, 0) =⇒ reach stk(X).

Then by the CONSEQ rule, we can reuse the proof of MarkAndPush(i).

In TraceStack() (Figure 33), the GC pops every object in the
mark stack and marks its children if needed, until the stack becomes
empty. It seems subtle why reach stk(X) holds as a loop invariant,
at each time before popping an object. Suppose the reachable white
object x is only traced from i by a white path which is the top
object on the mark stack. Then the GC does the following things in
order:

1. Pop i. Then x is reachable from the black object i which is not
on the stack now.

2. Read the pt1 field of i to a local variable j. As we explained
before, i.pt1 might not equal j since mutators could update
this field. We only know that ptfd sta(i.pt1, j) holds. Then is x
still reachable from i? Not necessarily. Actually x is probably
only reachable from j while j might not be a child of i. If
x is reachable from the current i.pt1 but not j, then i has
been updated by a write barrier indicating that x might be
reachable from the dirty black object i. One may argue that
it’s even possible that x is not reachable from i nor j, but

reachable from some other object. If so, then mutators must
have used the write barrier to update some object so that x is
reachable by another path without going though i nor j. In all
the cases, we can get reach tomk(mstk, i, {pt2, . . . , ptm}, j)
holds. Formally, the following lemma holds:

Lemma 47.

(a) reach stk(i :: X)⇐⇒ reach tomk(X, i, {pt1, . . . , ptm}, 0);
(b) reach tomk(X, i, Sid, 0) =⇒ reach tomk(X, i, Sid, j);

(c) reach tomk(X, i, Sid, j)∧ptfd sta(i.id, j)∧id ∈ Sid =⇒
reach tomk(X, i, Sid − {id}, j).

3. MarkAndPush(j). We can reuse the proof of this module again.

4. Mark and push other children. The proof is similar to the above
two steps, so we omit the discussions. Finally, reach stk(X)
holds because no reachable white object need to rely on the
reachability from i (it could be reachable from a child of i
which is on the stack now).

In the concurrent pre-cleaning phase CleanCard() (Figure 34),
dirty objects are pushed onto the mark stack and then TraceStack()
is called again. We reuse the proof of TraceStack() via the frame
rule.

The stop-the-world phase is implemented by an atomic block.
Mutators can be suspended without requiring safe points. The GC
first marks and pushes the roots of each thread onto the mark
stack in ScanRoot() (Figure 35). The atomic MarkAndPush(i) is
proved similarly to the concurrent one (E.1) with the same pre/post
conditions. Then the GC performs the atomic CleanCard() (Fig-
ure 36). We do not present the proof for the atomic TraceStack()
since it is similar to the proof of the concurrent one.

Finally, the concurrent Sweep() is verified in Figure 37.

E.5 Correctness of the Write Barrier

The relation ζ(t) defined in Figure 17 can be preserved under the
environment:

Lemma 48. For all σ, Σ, σ′ and Σ′, if (σ,Σ) ∈ ζ(t), (σ, σ′) ∈
R(t), (Σ,Σ′) ∈ R(t) and (σ′,Σ′) ∈ α, then (σ′,Σ′) ∈ ζ(t).

Proof:. ζ(t) = α∩{((π, h), (Π,H)) | π(t)(aux) = 0p} andR(t)
ensures not updating the store of the thread t. �

Then it’s easy to prove RGSim for skip:

Lemma 49. For all σ and Σ, if (σ,Σ) ∈ ζ(t), then

(t.skip, σ,R(t), Id) �α;ζ(t) (t.skip,Σ,R(t), Id)

Proof:. By co-induction.
Let S = {((t.skip, σ), (t.skip,Σ)) | (σ,Σ) ∈ ζ(t)}. We prove
S ⊆ F (S) where F is defined by the simulation. �

We use some denotations as follows:

set dirty(x) � atomic{x.dirty:=1;aux:=0}
Gt � Gtwrite pt ∪ Gtset dirty

Gt � G
t
write pt

Lemma 50. For all σ and Σ, for all id ∈ {pt1, . . . , ptm}, for all E
and E such that T(E) = E,

1. if (σ,Σ) ∈ ζ(t), then

(t.update(x.id, E), σ,R(t),Gt) �α;ζ(t)

(t.(x.id := E),Σ,R(t),Gt)
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2. if (σ,Σ) ∈ α and ∃n. σ.ss(t)(aux) = σ.ss(t)(x) = (n, 1),
then

(t.set dirty(x), σ,R(t),Gt) �α;ζ(t) (t.skip,Σ,R(t),Gt)

Proof:. For each case, by co-induction.
Case: The environments are executed. Similar to the proof of
Lemma 48.
Case: The low-level code goes one step (let σ = (π, h), s = π(t)
Σ = (Π,H) and S = Π(t)):

1. If (t.update(x.id, E), (π, h)) −→ (t.set dirty(x), (π′, h′)),
then s(x) = (n, 1), h(n) = o, [[E]](s,1) = n′, π′ = π{t �
s{aux� (n, 1)}} and h′ = h{n� o{id� n′}}.
Since [[E]](s,1) = n′, we know n′ = 0 or ∃x.s(x) = (n′, 1).
Thus we have ((π, h), (π′, h′)) ∈ Gt.
Since (σ,Σ) ∈ α, we know wfstate(σ), thus h(n)(color) �=
BLUE. Moreover, S(x) = l, Loc2Int(l) = n, H(l) = O,
[[E]]S = l′ (where Loc2Int(l′) = n′), O(id) = l′′, and l′ = nil
or ∃x.S(x) = l′.
Thus (t.(x.id := E), (Π,H)) =⇒

Gt

(t.skip, (Π′,H′)) where

Π′ = Π and H′ = H{l � O{id� l′}}.
We have ((π′, h′), (Π′,H′)) ∈ α, π′(t)(aux) = π′(t)(x) =
(n, 1), which are the premises of the second case.

2. If (σ,Σ) ∈ α and ∃n. σ.ss(t)(aux) = σ.ss(t)(x) = (n, 1),
then n ∈ dom(h) and h(n)(color) �= BLUE,
thus (t.set dirty(x), (π, h)) −→ (t.skip, (π′, h′))
where π′ = π{t � s{aux � 0}} and h′ = h{n �
o{dirty� 1}}. Thus we have ((π, h), (π′, h′)) ∈ Gt.
We can see ((π′, h′),Σ) ∈ ζ(t), which is the premise of
Lemma 49.

Case: The low-level code aborts.
If (t.update(x.id, E), (π, h)) −→ abort, then x �∈ dom(s), or
fst(s(x)) �∈ dom(h), or snd(s(x)) �= 1, or [[E]](s,1) =⊥.
Since (σ,Σ) ∈ α, we have x �∈ dom(S), or S(x) �∈ dom(H), or
¬∃l.[[E]]S = l.
Thus (t.(x.id := E), (Π,H)) −→ abort.
The premises of the second case ensure that (t.set dirty(x), σ)
will not abort. �

Finally, we can conclude the correctness of the write barrier:

(t.update(x.id, E),R(t),Gtwrite pt ∪ Gtset dirty) �α;ζ(t)�ζ(t)

(t.(x.id := E),R(t),Gt
write pt)

where id ∈ {pt1, . . . , ptm} and T(E) = E.
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