
Modular Verification of Linearizability
with Non-Fixed Linearization Points

(Extended Version)

Hongjin Liang Xinyu Feng
University of Science and Technology of China

lhj1018@mail.ustc.edu.cn xyfeng@ustc.edu.cn

Abstract
Locating linearization points (LPs) is an intuitive approach for
proving linearizability, but it is difficult to apply the idea in Hoare-
style logic for formal program verification, especially for verify-
ing algorithms whose LPs cannot be statically located in the code.
In this paper, we propose a program logic with a lightweight in-
strumentation mechanism which can verify algorithms with non-
fixed LPs, including the most challenging ones that use the help-
ing mechanism to achieve lock-freedom (as in HSY elimination-
based stack), or have LPs depending on unpredictable future exe-
cutions (as in the lazy set algorithm), or involve both features. We
also develop a thread-local simulation as the meta-theory of our
logic, and show it implies contextual refinement, which is equiv-
alent to linearizability. Using our logic we have successfully ver-
ified various classic algorithms, some of which are used in the
java.util.concurrent package.

1. Introduction
Linearizability is a standard correctness criterion for concurrent ob-
ject implementations [16]. It requires the fine-grained implementa-
tion of an object operation to have the same effect with an instanta-
neous atomic operation. To prove linearizability, the most intuitive
approach is to find a linearization point (LP) in the code of the im-
plementation, and show that it is the single point where the effect
of the operation takes place.

However, it is difficult to apply this idea when the LPs are not
fixed in the code of object methods. For a large class of lock-
free algorithms with helping mechanism (e.g., HSY elimination-
based stack [14]), the LP of one method might be in the code
of some other method. In these algorithms, each thread maintains
a descriptor recording all the information required to fulfill its
intended operation. When a thread A detects conflicts with another
thread B, A may access B’s descriptor and help B finish its intended
operation first before finishing its own. In this case, B’s operation
takes effect at a step from A. Thus its LP should not be in its own
code, but in the code of thread A.

Besides, in optimistic algorithms and lazy algorithms (e.g.,
Heller et al.’s lazy set [13]), the LPs might depend on unpredictable
future interleavings. In those algorithms, a thread may access the
shared states as if no interference would occur, and validate the
accesses later. If the validation succeeds, it finishes the operation;
otherwise it rolls back and retries. Its LP is usually at a prior state
access, but only if the later validation succeeds.

Reasoning about algorithms with non-fixed LPs has been a
long-standing problem. Most existing work either supports only
simple objects with static LPs in the implementation code (e.g., [2,
5, 18, 29]), or lacks formal soundness arguments (e.g., [31]). In this

paper, we propose a program logic for verification of linearizability
with non-fixed LPs. For a concrete implementation of an object
method, we treat the corresponding abstract atomic operation and
the abstract state as auxiliary states, and insert auxiliary commands
at the LP to execute the abstract operation simultaneously with
the concrete step. We verify the instrumented implementation in
an existing concurrent program logic (we will use LRG [8] in
this paper), but extend it with new logic rules for the auxiliary
commands. We also give a new relational interpretation to the logic
assertions, and show that at the LP, the step of the original concrete
implementation has the same effect as the abstract operation. We
handle non-fixed LPs in the following way:

• To support the helping mechanism, we collect a pending thread
pool as auxiliary state, which is a set of threads and their
abstract operations that might be helped. We allow the thread
that is currently being verified to use auxiliary commands to
help execute the abstract operations in the pending thread pool.
• For future-dependent LPs, we introduce a try-commit mecha-

nism to reason with uncertainty. The try clause guesses whether
the corresponding abstract operation should be executed and
keeps all possibilities, while commit chooses a specific pos-
sible case when we know which guess is correct later.

Although our program logic looks intuitive, it is challenging to
prove that the logic is sound w.r.t. linearizability. Recent work has
shown the equivalence between linearizability and contextual re-
finement [5, 9, 10]. The latter is often verified by proving simula-
tions between the concrete implementation and the atomic opera-
tion [5]. The simulation establishes some correspondence between
the executions of the two sides, showing there exists one step in
the concrete execution that fulfills the abstract operation. Given the
equivalence between linearizability and refinement, we would ex-
pect the simulations to justify the soundness of the LP method and
to serve as the meta-theory of our logic. However, existing thread-
local simulations do not support non-fixed LPs (except the recent
work [30], which we will discuss in Sec. 7). We will explain the
challenges in detail in Sec. 2.

Our work is inspired by the earlier work on linearizability
verification, in particular the use of auxiliary code and states by
Vafeiadis [31] and our previous work on thread-local simulation
RGSim [18], but makes the following new contributions:

• We propose the first program logic that has a formal soundness
proof for linearizability with non-fixed LPs. Our logic is built
upon the unary program logic LRG [8], but we give a relational
interpretation of assertions and rely/guarantee conditions. We
also introduce new logic rules for auxiliary commands used
specifically for linearizability proofs.

1 2013/4/20

• We give a light instrumentation mechanism to relate con-
crete implementations with abstract operations. The system-
atic use of auxiliary states and commands makes it possible
to execute the abstract operations synchronously with the con-
crete code. The try-commit clauses allow us to reason about
future-dependent uncertainty without resorting to prophecy
variables [1, 31], whose existing semantics (e.g., [1]) is un-
suitable for Hoare-style verification.
• We design a novel thread-local simulation as the meta-theory

for our logic. It generalizes RGSim [18] and other composi-
tional reasoning of refinement (e.g., [5, 29]) with the support
for non-fixed LPs.
• Instead of ensuring linearizability directly, the program logic

and the simulation both establish contextual refinement, which
we prove is equivalent to linearizability. A program logic for
contextual refinement is interesting in its own right, since con-
textual refinement is also a widely accepted (and probably more
natural) correctness criterion for library code.
• We successfully apply our logic to verify 12 well-known algo-

rithms. Some of them are used in the java.util.concurrent
package, such as MS non-blocking queue [22] and Harris-
Michael lock-free list [11, 21].

In the rest of this paper, we first analyze the challenges in the
logic design and explain our approach informally in Sec. 2. Then
we give the basic technical setting in Sec. 3, including a formal
operational definition of linearizability. We present our program
logic in Sec. 4, and the new simulation relation as the meta-theory
in Sec. 5. In Sec. 6 we summarize all the algorithms we have
verified and sketch the proofs of three representative algorithms.
We discuss related work and conclude in Sec. 7.

2. Challenges and Our Approach
Below we start from a simple program logic for linearizability with
fixed LPs, and extend it to support algorithms with non-fixed LPs.
We also discuss the problems with the underlying meta-theory,
which establishes the soundness of the logic w.r.t. linearizability.

2.1 Basic Logic for Fixed LPs
We first show a simple and intuitive logic which follows the LP
approach. As a working example, Fig. 1(a) shows the implementa-
tion of push in Treiber stack [28] (let’s first ignore the blue code at
line 7’). The stack object is implemented as a linked list pointed to
by S, and push(v) repeatedly tries to update S to point to the new
node using compare-and-swap (cas) until it succeeds.

To verify linearizability, we first locate the LP in the code. The
LP of push(v) is at the cas statement when it succeeds (line 7).
That is, the successful cas can correspond to the abstract atomic
PUSH(v) operation: Stk := v::Stk; and all the other concrete
steps cannot. Here we simply represent the abstract stack Stk as
a sequence of values with “::” for concatenation. Then push(v)
can be linearized at the successful cas since it is the single point
where the operation takes effect.

We can encode the above reasoning in an existing (unary) con-
current program logic, such as Rely-Guarantee reasoning [17] and
CSL [23]. Inspired by Vafeiadis [31], we embed the abstract oper-
ation γ and the abstract state θ as auxiliary states on the concrete
side, so the program state now becomes (σ, (γ, θ)), where σ is the
original concrete state. Then we instrument the concrete implemen-
tation with an auxiliary command linself (shorthand for “linearize
self”) at the LP to update the auxiliary state. Intuitively, linself will
execute the abstract operation γ over the abstract state θ, as de-
scribed in the following operational semantics rule:

1 push(int v) {
2 local x, t, b;
3 x := new node(v);
4 do {
5 t := S;
6 x.next := t;
7 <b := cas(&S,t,x);
7’ if(b) linself;>
8 } while(!b);
9 }

(a) Treiber Stack

1 readPair(int i, j) {
2 local a, b, v, w;
3 while(true) {
4 <a := m[i].d; v := m[i].v;>
5 <b := m[j].d; w := m[j].v;
5’ trylinself;>
6 if(v = m[i].v) {
6’ commit(cid� (end, (a, b)));
7 return (a, b); }
8 } }
9 write(int i, d) {

10 <m[i].d := d; m[i].v++;> }

(c) Pair Snapshot
1 push(int v) {
2 local p, him, q;
3 p := new thrdDescriptor(cid, PUSH, v);
4 while(true) {
5 if (tryPush(v)) return;
6 loc[cid] := p;
7 him := rand(); q := loc[him];
8 if (q != null && q.id = him && q.op = POP)
9 if (cas(&loc[cid], p, null)) {

10 <b := cas(&loc[him], q, p);
10’ if(b) {lin(cid); lin(him);}>
11 if (b) return; }
12 ...
13 } } (b) HSY Elimination-Based Stack

Figure 1. LPs and Instrumented Auxiliary Commands

(γ, θ) (end, θ′)
(linself, (σ, (γ, θ))) −→ (skip, (σ, (end, θ′)))

Here encodes the transition of γ at the abstract level, and end is
a termination marker. We insert linself into the same atomic block
with the concrete statement at the LP, such as line 7’ in Fig. 1(a),
so that the concrete and abstract sides are executed simultaneously.
Here the atomic block 〈C〉 means C is executed atomically. Then
we reason about the instrumented code using a traditional concur-
rent logic extended with a new inference rule for linself.

The idea is intuitive, but it cannot handle more advanced algo-
rithms with non-fixed LPs, including the algorithms with the help-
ing mechanism and those whose locations of LPs depend on the
future interleavings. Below we analyze the two challenges in detail
and explain our solutions using two representative algorithms, the
HSY stack and the pair snapshot.

2.2 Support Helping Mechanism with Pending Thread Pool
HSY elimination-based stack [14] is a typical example using the
helping mechanism. Figure 1(b) shows part of its push method
implementation. The basic idea behind the algorithm is to let a push
and a pop cancel out each other.

At the beginning of the method in Fig. 1(b), the thread allocates
its thread descriptor (line 3), which contains the thread id, the name
of the operation to be performed, and the argument. The current
thread cid first tries to perform Treiber stack’s push (line 5). It
returns if succeeds. Otherwise, it writes its descriptor in the global
loc array (line 6) to allow other threads to eliminate its push. The
elimination array loc[1..n] has one slot for each thread, which
holds the pointer to a thread descriptor. The thread randomly reads
a slot him in loc (line 7). If the descriptor q says him is doing
pop, cid tries to eliminate itself with him by two cas instructions.
The first clears cid’s entry in loc so that no other thread could
eliminate with cid (line 9). The second attempts to mark the entry
of him in loc as “eliminated with cid” (line 10). If successful, it
should be the LPs of both the push of cid and the pop of him, with
the push happening immediately before the pop.

2 2013/4/20

The helping mechanism allows the current thread to linearize
the operations of other threads, which cannot be expressed in the
basic logic. It also breaks modularity and makes thread-local ver-
ification difficult. For the thread cid, its concrete step could cor-
respond to the steps of both cid and him at the abstract level. For
him, a step from its environment could fulfill its abstract operation.
We must ensure in the thread-local verification that the two threads
cid and him always take consistent views on whether and how the
abstract operation of him is done. For example, if we let a concrete
step in cid fulfill the abstract pop of him, we must know him is
indeed doing pop and its pop has not been done before. Otherwise,
we will not be able to compose cid and him in parallel.

We extend the basic logic to express the helping mechanism.
First we introduce a new auxiliary command lin(t) to linearize a
specific thread t. For instance, in Fig. 1(b) we insert line 10’ at
the LP to execute both the push of cid and the pop of him at the
abstract level. We also extend the auxiliary state to record both
abstract operations of cid and him. More generally, we embed
a pending thread pool U , which maps threads to their abstract
operations. It specifies a set of threads whose operations might
be helped by others. Then under the new state (σ, (U, θ)), the
semantics of lin(t) just executes the thread t’s abstract operation
in U , similarly to the semantics of linself discussed before.

The shared pending thread pool U allows us to recover the
thread modularity when verifying the helping mechanism. A con-
crete step of cid could fulfill the operation of him in U as well as
its own abstract operation; and conversely, the thread him running
in parallel could check U to know if its operation has been finished
by others (such as cid) or not. We gain consistent abstract infor-
mation of other threads in the thread-local verification. Note that
the need of U itself does not break modularity because the required
information of other threads’ abstract operations can be inferred
from the concrete state. In the HSY stack example, we know him
is doing pop by looking at its thread descriptor in the elimination
array. In this case U can be viewed as an abstract representation of
the elimination array.

2.3 Try-Commit Commands for Future-Dependent LPs
Another challenge is to reason about optimistic algorithms whose
LPs depend on the future interleavings.

We give a toy example, pair snapshot [26], in Fig. 1(c). The
object is an array m, each slot of which contains two fields: d for
the data and v for the version number. The write(i,d) method
(lines 9) updates the data stored at address i and increments the
version number instantaneously. The readPair(i,j) method in-
tends to perform an atomic read of two slots i and j in the presence
of concurrent writes. It reads the data at slots i and j separately at
lines 4 and 5, and validate the first read at line 6. If i’s version num-
ber has not been increased, the thread knows that when it read j’s
data at line 5, i’s data had not been updated. This means the two
reads were at a consistent state, thus the thread can return. We can
see that the LP of readPair should be at line 5 when the thread
reads j’s data, but only if the validation at line 6 succeeds. That is,
whether we should linearize the operation at line 5 depends on the
future unpredictable behavior of line 6.

As discussed a lot in previous work (e.g., [1, 31]), the future-
dependent LPs cannot be handled by introducing history variables,
which are auxiliary variables storing values or events in the past ex-
ecutions. We have to refer to events coming from the unpredictable
future. Thus people propose prophecy variables [1, 31] as the dual
of history variables to store future behaviors. But as far as we know,
there is no semantics of prophecy variables suitable for Hoare-style
local and compositional reasoning.

Instead of resorting to prophecy variables, we follow the specu-
lation idea [30]. For the concrete step at a potential LP (e.g., line 5

(a) Simple Simulation (b) Pending Thread Pool (c) Speculation

Figure 2. Simulation Diagrams

of readPair), we execute the abstract operation speculatively and
keep both the result and the original abstract configuration. Later
based on the result of the validation (e.g., line 6 in readPair), we
keep the appropriate branch and discard the other.

For the logic, we introduce two new auxiliary commands:
trylinself is to do speculation, and commit(p) will commit to the
appropriate branch satisfying the assertion p. In Fig. 1(c), we insert
lines 5’ and 6’, where cid � (end, (a, b)) means that the cur-
rent thread cid should have done its abstract operation and would
return (a, b). We also extend the auxiliary state to record the mul-
tiple possibilities of abstract operations and abstract states after
speculation.

Furthermore, we can combine the speculation idea with the
pending thread pool. We allow the abstract operations in the pend-
ing thread pool as well as the current thread to speculate. Then
we could handle some trickier algorithms such as RDCSS [12], in
which the location of LP for thread t may be in the code of some
other thread and also depend on the future behaviors of that thread.
Please see Sec. 6 for one such example.

2.4 Simulation as Meta-Theory
The LP proof method can be understood as building simulations be-
tween the concrete implementations and the abstract atomic opera-
tions, such as the simple weak simulation in Fig. 2(a). The lower-
level and higher-level arrows are the steps of the implementation
and of the abstract operation respectively, and the dashed lines de-
note the simulation relation. We use dark nodes and white nodes
at the abstract level to distinguish whether the operation has been
finished or not. The only step at the concrete side corresponding
to the single abstract step should be the LP of the implementation
(labeled “LP” in the diagram). Since our program logic is based on
the LP method, we can expect simulations to justify its soundness.
In particular, we want a thread-local simulation which can handle
both the helping mechanism and future-dependent LPs and can en-
sure linearizability.

To support helping in the simulation, we should allow the LP
step at the concrete level to correspond to an abstract step made by
a thread other than the one being verified. This requires informa-
tion from other threads at the abstract side, thus makes it difficult
to build a thread-local simulation. To address the problem, we intro-
duce the pending thread pool at the abstract level of the simulation,
just as in the development of our logic in Sec. 2.2. The new simula-
tion is shown in Fig. 2(b). We can see that a concrete step of thread
t could help linearize the operation of t′ in the pending thread pool
as well as its own operation. Thus the new simulation intuitively
supports the helping mechanism.

As forward simulations, neither of the simulations in Fig. 2(a)
and (b) supports future-dependent LPs. For each step along the con-
crete execution in those simulations, we need to decide immedi-
ately whether the step is at the LP, and cannot postpone the decision
to the future. As discussed a lot in previous work (e.g., [1, 3, 6, 20]),
we have to introduce backward simulations or hybrid simulations
to support future-dependent LPs. Here we exploit the speculation
idea and develop a forward-backward simulation [20]. As shown in
Fig. 2(c), we keep both speculations after the potential LP, where

3 2013/4/20

(MName) f ∈ String

(Expr) E ::= x | n | E + E | . . .
(BExp) B ::= true | false | E = E | !B | . . .
(Instr) c ::= x := E | x := [E] | [E] := E | print(E)

| x := cons(E, . . . , E) | dispose(E) | . . .
(Stmt) C ::= skip | c | x := f(E) | return E | noret

| 〈C〉 | C;C | if (B) C else C | while (B){C}
(Prog) W ::= skip | let Π in C ‖ . . .‖C

(ODecl) Π ::= {f1 (x1, C1), . . . , fn (xn, Cn)}

Figure 3. Syntax of the Programming Language

the higher black nodes result from executing the abstract operation
and the lower white nodes record the original abstract configura-
tion. Then at the validation step we commit to the correct branch.

Finally, to ensure linearizability, the thread-local simulation has
to be compositional. As a counterexample, we can construct a
simple simulation (like the one in Fig. 2(a)) between the following
implementation C and the abstract atomic increment operation γ,
but C is not linearizable w.r.t. γ.

C : local t; t := x; x := t + 1; γ : x++

The reason is that the simple simulation is not compositional w.r.t.
parallel compositions. To address this problem, we proposed a
compositional simulation RGSim [18] in previous work. The idea
is to parameterize the simple simulation with the interference with
the environment, in the form of rely/guarantee conditions (R and
G) [17]. RGSim says, the concrete executions are simulated by the
abstract executions under interference from the environmentR, and
all the related state transitions of the thread being verified should
satisfy G. For parallel composition, we check that the guarantee
G of each thread is permitted in the rely R of the other. Then the
simulation becomes compositional and can ensure linearizability.

We combine the above ideas and develop a new compositional
simulation with the support of non-fixed LPs as the meta-theory of
our logic. We will discuss our simulation formally in Sec. 5.

3. Basic Technical Settings and Linearizability
In this section, we formalize linearizability of an object implemen-
tation w.r.t. its specification, and show that linearizability is equiv-
alent to contextual refinement.

3.1 Language and Semantics
As shown in Fig. 3, a program W contains several client threads in
parallel, each of which could call the methods declared in the object
Π. A method is defined as a pair (x,C), where x is the formal
argument and C is the method body. For simplicity, we assume
there is only one object in W and each method takes one argument
only, but it is easy to extend our work with multiple objects and
arguments.

Each method returns a value to the client using the return E
command, unless it does not terminate. We use a runtime com-
mand noret to abort methods that terminate but do not execute
return E. It is automatically appended to the method code and
is not supposed to be used by programmers. Other commands
are mostly standard. Commands x := [E] and [E] := E′ do
memory load and store. Memory allocation and free are done by
x := cons(E1, . . . , En) and dispose(E). The atomic block 〈C〉
executes C atomically. Clients can also use print(E) to produce
observable external events. We do not allow the object’s methods
to produce external events. To simplify the semantics, we also as-
sume there are no nested method calls.

(ThrdID) t ∈ Nat

(Mem) σ ∈ (PVar ∪ Nat) ⇀ Int

(CallStk) κ ::= (σl, x, C) | ◦
(ThrdPool) K ::= {t1 κ1, . . . , tn κn}

(PState) S ::= (σc, σo,K)

(LState) s ::= (σc, σo, κ)

(Evt) e ::= (t, f, n) | (t, ok, n) | (t, obj, abort)
| (t, out, n) | (t, clt, abort)

(ETrace) H ::= ε | e ::H

Figure 4. States and Event Traces

Figure 4 gives the model of program states. Memory σ maps
variables and memory locations to integers. To ensure that clients
can access the object via calling its methods only, we first need to
precisely determine the object data from a whole state. Here we
partition a global state S into the client memory σc, the object σo
and a thread pool K. The thread pool maps thread identifiers t to
their local call stack frames. A call stack κ could be either empty
(◦) when the thread is not executing a method, or a triple (σl, x, C),
where σl maps the method’s formal argument and local variables
(if any) to their values, x is the caller’s variable to receive the return
value, and C is the caller’s remaining code to be executed after the
method returns. To give a thread-local semantics, we also define the
thread local view s of the state.

Figure 5 gives selected rules of the operational semantics. We
show three kinds of transitions: 7−→ for the top-level program
transitions,−→ t,Π for the transitions of thread t with the methods’
declaration Π, and−_ t for the steps inside method calls of thread
t. To describe the operational semantics for threads, we use an
execution context E:

(ExecContext) E ::= [] | E;C

The hole [] shows the place where the execution of code occurs.
E[C] represents the code resulting from placing C into the hole.

We label transitions with events e defined in Fig. 4. An event
could be a method invocation (t, f, n) or return (t, ok, n), a fault
(t, obj, abort) produced by the object method code, an output
(t, out, n) generated by print(E), or a fault (t, clt, abort) from the
client code. The first two events are called object events, and the last
two are observable external events. The third one (t, obj, abort)
belongs to both classes. Note that here we explicitly distinguish the
faults caused by the methods and by the clients. This allows us to
clearly know where to place the blame when the program aborts,
and then to discuss the safety of the object. An event trace H is
then defined as a finite sequence of events.

The operational semantics is mostly straightforward. Note that
noret is appended at the end of the method body at the time of
method invocation. Since noret aborts the program, a safe method
implementation must end with return E.

3.2 Object Specification and Linearizability
Next we formalize object specifications Γ, which maps method
names to their abstract operations γ, as shown in Fig. 6. γ trans-
forms an argument value and an initial abstract object to a return
value with a resulting abstract object in a single step. It specifies
the intended sequential behaviors of the method, which should be
always safe. Here we model γ as a partial function, thus it could be
blocked at certain abstract object θ (when θ 6∈ dom(γ(n)) for some
n). For example, when a thread attempts to dequeue from an empty
queue, it may need to wait until another thread enqueues an item.
The abstract object representation θ is defined as a mapping from
program variables to abstract values. We leave the abstract values
unspecified here, which can be instantiated by programmers.

4 2013/4/20

(Ci, (σc, σo,K(i)))
e−→ i,Π (C′i, (σ

′
c, σ
′
o, κ
′))

(let Π in C1‖ . . . Ci . . .‖Cn, (σc, σo,K))
e7−→ (let Π in C1‖ . . . C′i . . .‖Cn, (σ′c, σ′o,K{i κ′}))

(let Π in skip‖ . . .‖ skip,S) 7−→ (skip,S)

(Ci, (σc, σo,K(i)))
e−→ i,Π abort

(let Π in C1‖ . . . Ci . . .‖Cn, (σc, σo,K))
e7−→ abort

(a) Program Transitions

Π(f) = (y, C) JEKσc = n x ∈ dom(σc) κ = ({y n}, x,E[skip])

(E[x := f(E)], (σc, σo, ◦))
(t,f,n)−−−−→ t,Π (C; noret, (σc, σo, κ))

f 6∈ dom(Π) or JEKσc undefined or x 6∈ dom(σc)

(E[x := f(E)], (σc, σo, ◦))
(t,clt,abort)−−−−−−−→ t,Π abort

κ = (σl, x, C) JEKσo]σl = n σ′c = σc{x n}

(E[return E], (σc, σo, κ))
(t,ok,n)−−−−−→ t,Π (C, (σ′c, σo, ◦))

κ = (σl, x, C) JEKσo]σl undefined

(E[return E], (σc, σo, κ))
(t,obj,abort)−−−−−−−→ t,Π abort

(noret, s)
(t,obj,abort)−−−−−−−→ t,Π abort

JEKσc = n

(E[print(E)], (σc, σo, ◦))
(t,out,n)−−−−−→ t,Π (E[skip], (σc, σo, ◦))

(C, σo] σl) −_ t (C′, σ′o] σ′l) dom(σl) = dom(σ′l)

(C, (σc, σo, (σl, x, Cc))) −→ t,Π (C′, (σc, σ′o, (σ
′
l, x, Cc)))

(C, σo] σl) −_ t abort

(C, (σc, σo, (σl, x, Cc)))
(t,obj,abort)−−−−−−−→ t,Π abort

(b) Thread Transitions

{l, . . . , l+i−1} ∩ dom(σ) = ∅ JE1Kσ = n1 . . . JEiKσ = ni x ∈ dom(σ)

(E[x := cons(E1, . . . , Ei)], σ) −_ t (E[skip], (σ{x l})] {l n1, . . . , l+i−1 ni})

JEjKσ undefined (1 ≤ j ≤ i) or x 6∈ dom(σ)

(E[x := cons(E1, . . . , Ei)], σ) −_ t abort
(C, σ) −_∗t (skip, σ′)

(E[〈C〉], σ) −_ t (E[skip], σ′)

(C, σ) −_∗t abort
(E[〈C〉], σ) −_ t abort

(c) Thread Transitions Inside Method Calls

Figure 5. Selected Rules of Concrete Operational Semantics

(AbsObj) θ ∈ PVar ⇀ AbsVal

(MSpec) γ ∈ Int→ AbsObj ⇀ Int× AbsObj

(OSpec) Γ ::= {f1 γ1, . . . , fn γn}
(AbsStmt) C ::= C | fexec(f, n) | fret(n)

(AbsProg) W ::= skip | with Γ do C‖ . . .‖C
(AbsStk) ak ::= (x,C) | ◦

(AbsPool) K ::= {t1 ak1, . . . , tn akn}
(AbsState) as ::= (σc, θ, ak)

(AbsPState) S ::= (σc, θ,K)

Figure 6. Object Specification and Abstract Machine

Then we give an abstract version of programs, where clients
interact with the abstract object specification. Behaviors of this
abstract program captures the intended behaviors of the original
program where concrete object implementation is used. Syntax of
the language is also defined in Fig. 6. Here in the program W client
threads use the object specification Γ instead of its implementation
Π. Statements C for client threads consist of all statements C in
the concrete language and two extra runtime commands fexec and
fret used in the intermediate steps at the method calls, which will
be discussed later. An abstract state S consists of the client memory
σc, the abstract object θ and the abstract thread pool K. Here in the
abstract stack frame ak we do not need the local memory for the
method execution as in κ. The thread local view of states are now
represented as as.

Selected semantic rules for the abstract programs is shown in
Fig. 7, which is similar to the concrete semantics. Below we only
discuss the rules for method calls. Although the method specifica-
tion γ is atomic, we split the method call x := f(E) into three
steps to decouple the evaluation of the argument E and the assign-
ment of the return value to x from the execution of the atomic γ.
When a client thread calls a method f , it first computes the argu-
ment value n and saves the client information in the call stack ak,
as in the concrete semantics. This step reduces to fexec(f, n), and
is the preparation phase of the method call. The second step exe-
cutes fexec(f, n) to fret(n′) respecting the specification of f , and
updates the abstract object atomically. A pair of invocation and re-
turn events is generated during this step. Finally fret(n′) finishes
the method call and resumes the client executions.

Linearizability Linearizability [16] is defined using the notion of
histories, which are special event tracesH consisting of only object
events (i.e., invocations, returns and object faults).

Below we use H(i) for the i-th event of H , and |H| for the
length of H . H|t represents the sub-history consisting of all the
events whose thread id is t. The predicates is inv(e) and is res(e)
mean that the event e is a method invocation and a response (i.e., a
return or an object fault) respectively.

• is inv(e) iff there exist t, f and n such that e = (t, f, n);
• is ok(e) iff there exist t and n′ such that e = (t, ok, n′);
• is abt(e) iff there exists t such that e = (t, obj, abort);
• is res(e) iff either is ok(e) or is abt(e) holds.

5 2013/4/20

(Ci, (σc, θ,K(i)))
H◦−→ i,Γ(C′i, (σ

′
c, θ
′, ak′))

(with Γ do C1‖ . . .Ci . . .‖Cn, (σc, θ,K))
H
�−→ (with Γ do C1‖ . . .C′i . . .‖Cn, (σ′c, θ′,K{i ak′}))

(with Γ do skip‖ . . .‖ skip, S) �−→ (skip, S)

(Ci, (σc, θ,K(i)))
H◦−→ i,Γabort

(with Γ do C1‖ . . .Ci . . .‖Cn, (σc, θ,K))
H
�−→ abort

f ∈ dom(Γ) JEKσc = n x ∈ dom(σc) ak = (x,E[skip])

(E[x := f(E)], (σc, θ, ◦)) ◦−→ t,Γ(fexec(f, n), (σc, θ, ak))

Γ(f)(n)(θ) = (n′, θ′)

(fexec(f, n), (σc, θ, ak)) ◦(t,f,n)::(t,ok,n′)−−−−−−−−−−−→ t,Γ (fret(n′), (σc, θ′, ak))

ak = (x,C) σ′c = σc{x n′}
(fret(n′), (σc, θ, ak)) ◦−→ t,Γ(C, (σ′c, θ, ◦))

f 6∈ dom(Γ) or JEKσc undefined or x 6∈ dom(σc)

(E[x := f(E)], (σc, θ, ◦)) ◦
(t,clt,abort)−−−−−−−→ t,Γ abort

Figure 7. Selected Rules of the Abstract Operational Semantics

We say a responses e2 matches an invocation e1 iff they have the
same thread IDs.

match(e1, e2)
def
= is inv(e1) ∧ is res(e2)
∧ (get thrd(e1) = get thrd(e2))

A history H is sequential iff the first event of H is an invocation,
and each invocation, except possibly the last, is immediately fol-
lowed by a matching response. It is inductively defined as follows.

seq(ε)

is inv(e)

seq(e :: ε)

match(e1, e2) seq(H)

seq(e1 :: e2 :: H)

Then H is well-formed iff every thread sub-history H|t is sequen-
tial.

well formed(H)
def
= ∀t. seq(H|t) .

H is complete iff it is well-formed and every invocation has a
matching response. An invocation is pending if no matching re-
sponse follows it. We handle pending invocations in an incomplete
history H following the standard linearizability definition [16]:
we append zero or more response events to H , and drop the re-
maining pending invocations. Then we get a set of complete his-
tories, which is denoted by completions(H). Formally, we define
completions(H) as follows.

Definition 1 (Extensions of a history). extensions(H) is a set of
well-formed histories where we extend H by appending successful
return events:

well formed(H)

H ∈ extensions(H)

H′ ∈ extensions(H) is ok(e) well formed(H′ ::e)

H′ ::e ∈ extensions(H)

Or equivalently,

extensions(H)
def
=

{H′ | well formed(H′)∧ ∃Hok. H′=H::Hok∧ ∀i. is ok(Hok(i))}.

Definition 2 (Completions of a history). truncate(H) is the max-
imal complete sub-history of H , which is inductively defined by
dropping the pending invocations in H:

truncate(ε)
def
= ε

truncate(e ::H)
def
=

 e :: truncate(H) if is res(e)
or ∃i. match(e,H(i))

truncate(H) otherwise

Then completions(H)
def
= {truncate(H ′) | H ′ ∈ extensions(H)} .

It’s a set of histories without pending invocations.

Then we can formulate the linearizability relation between well-
formed histories, which is a core notion used in the linearizability
definition of an object.

Definition 3 (Linearizability Relation between Histories).
H �lin H

′ iff

1. ∀t. H|t = H ′|t;
2. there exists a bijection π : {1, . . . , |H|} → {1, . . . , |H ′|} such

that ∀i. H(i) = H ′(π(i)) and

∀i, j. i < j ∧ is res(H(i)) ∧ is inv(H(j)) =⇒ π(i) < π(j).

That is, H is linearizable w.r.t. H ′ if the latter is a permutation
of the former, preserving the order of events in single threads (the
first condition) and the non-overlapping method calls (the second
condition).

Informally, an object is linearizable iff all its concurrent his-
tories are linearizable. We generate the concurrent histories of an
object by all the possible clients that may use the object, according
to the concrete operational semantics (Figure 5). Below we define
H [[W, (σc, σo)]] to get the set of histories from the executions ofW
with the initial client memory σc, the shared object σo, and empty
call stacks for all threads:

H [[W, (σc, σo)]]
def
= {get hist(H) | ∃S,W ′,S′. S = init(σc, σo)

∧ ((W,S)
H7−→∗ (W ′,S′) ∨ (W,S)

H7−→∗ abort)} , where

S = init(σc, σo) iff ∃K. S = (σc, σo,K) ∧ ∀t. K(t) = ◦

We use H7−→∗ for zero or multiple-step program transitions with
an event trace H generated. get hist(H) projects H to the sub-
trace consisting of object events only. By the concrete operational
semantics in Figure 5, we know that every generated history in
H [[W, (σc, σo)]] is well-formed.

Similarly we can generate histories by the abstract semantics
(Figure 7) for an abstract program W that uses the specification.
Here we overload the notations used at the concrete level.

H [[W, (σc, θ)]]
def
= {get hist(H) | ∃S,W′, S′. S = init(σc, θ)

∧ ((W, S)
H
�−→∗ (W′, S′) ∨ (W, S)

H
�−→∗ abort)} , where

S = init(σc, θ) iff ∃K. S = (σc, θ,K) ∧ ∀t. K(t) = ◦

We can see that every history in H [[W, (σc, θ)]] is sequential from
the abstract semantics.

6 2013/4/20

Then a legal sequential history H is a history generated by any
client using the specification Γ with an initial abstract object θ.

Γ B (θ,H)
def
=

∃n,C1, . . . , Cn, σc. H ∈ H [[(with Γ do C1‖ . . .‖Cn), (σc, θ)]]

The legal sequential histories will serve as the criteria for the
concurrent histories of an object when defining linearizability. Then
an object is linearizable iff all its completed concurrent histories are
linearizable w.r.t. some legal sequential histories.

Definition 4 (Linearizability of Objects). The object’s implemen-
tation Π is linearizable w.r.t. its specification Γ under a refinement
mapping ϕ, denoted by Π �ϕ Γ, iff

∀n,C1, . . . , Cn, σc, σo, θ,H.
H ∈ H [[(let Π in C1‖ . . .‖Cn), (σc, σo)]] ∧ (ϕ(σo) = θ)
=⇒ ∃Hc, H′. Hc ∈ completions(H) ∧ Γ B (θ,H′) ∧Hc �lin H

′

Here the mapping ϕ relates concrete objects to abstract ones:

(RefMap) ϕ ∈ Mem ⇀ AbsObj

The side condition ϕ(σo) = θ in the above definition requires
the initial concrete object σo to be a well-formed data structure
representing a valid object θ.

3.3 Contextual Refinement and Linearizability
Besides linearizability, we have contextual refinement, another
widely accepted correctness criteria for object code. Below we
formulate its definition and prove the two notions are equivalent.

We first generate the observable event traces using our concrete
and abstract semantics, as shown below.

O [[W, (σc, σo)]]
def
= {get obsv(H) | ∃S,W ′,S′. S = init(σc, σo)

∧ ((W,S)
H7−→∗ (W ′,S′) ∨ (W,S)

H7−→∗ abort)}

O [[W, (σc, θ)]]
def
= {get obsv(H) | ∃S,W′, S′. S = init(σc, θ)

∧ ((W, S)
H
�−→∗ (W′, S′) ∨ (W, S)

H
�−→∗ abort)}

where get obsv(H) projects H to the sub-trace consisting of ob-
servable events only.

Then contextual refinement Π vϕ Γ says that, for any client
contextC1‖ . . .‖Cn, the observable event traces it generates when
using Π are not more than those generated when using Γ instead.

Definition 5 (Contextual Refinement). Π vϕ Γ iff

∀n,C1, . . . , Cn, σc, σo, θ. (ϕ(σo) = θ)
=⇒ O [[(let Π in C1‖ . . .‖Cn), (σc, σo)]]
⊆ O [[(with Γ do C1‖ . . .‖Cn), (σc, θ)]] .

Following Filipović et al. [9], we can prove that linearizability
is equivalent to contextual refinement. The proofs are given in
Appendix A.

Theorem 6 (Equivalence). Π �ϕ Γ ⇐⇒ Π vϕ Γ.

The theorem gives us another point of view to understand lin-
earizability. Since linearizability implies contextual refinement, we
can soundly replace the object specification by its implementa-
tion without generating more observable behaviors for any client.
In particular, the safety of a client using the specification will be
preserved when using a linearizable implementation instead, since
fault events are observable. On the other hand, since contextual
refinement also implies linearizability, we can use various proof
methods (such as simulations and logical relations) for the former
to verify the latter. In the next section, we will define a new simu-
lation which implies contextual refinement and can verify lineariz-
ability of objects that might have non-fixed linearization points.

(InsStmt) C̃ ::= skip | c | return E | noret
| linself | lin(E) | trylinself
| trylin(E) | commit(p) | 〈C̃〉 | C̃; C̃

| if (B) C̃ else C̃ | while (B){C̃}
(RelState) Σ ::= (σ,∆)

(SpecSet) ∆ ::= {(U1, θ1), . . . , (Un, θn)}
(PendThrds) U ::= {t1 Υ1, . . . , tn Υn}

(AbsOp) Υ ::= (γ, n) | (end, n)

(RelAss) p, q, I ::= true | false | E = E | emp | E 7→ E
| x Z⇒ E | E � (γ,E) | E � (end, E)
| p ∗ q | p⊕ q | p ∨ q | . . .

(RelAct) R,G ::= p n q | [p] | R ∗R | R⊕R | . . .

Figure 8. Instrumented Code and Relational State Model

• def
= {(∅, ∅)} where • ∈ SpecSet

f⊥g def
= dom(f) ∩ dom(g) = ∅

∆1]∆2
def
= U1⊥U2 ∧ θ1⊥θ2 , where (U1,θ1)∈∆1 ∧ (U2,θ2)∈∆2

∆1 ∗∆2
def
= {(U1]U2, θ1]θ2) | (U1,θ1)∈∆1 ∧ (U2,θ2)∈∆2}

Σ1 ∗ Σ2
def
= (σ1] σ2,∆1 ∗∆2)
where Σ1 = (σ1,∆1),Σ2 = (σ2,∆2), σ1⊥σ2 and ∆1]∆2

Σ1 ⊕ Σ2
def
=

{
(σ,∆1∪∆2) if Σ1 = (σ,∆1) and Σ2 = (σ,∆2)
undefined otherwise

{{E}}σ
def
=

{
JEKσ if dom(σ) = fv(E)
undefined otherwise

(σ,∆) |= true always holds

(σ,∆) |= false never holds

(σ,∆) |= E1 = E2 iff {{(E1 = E2)}}σ = true ∧∆ = •
(σ,∆) |= emp iff σ = ∅ ∧∆ = •
(σ,∆) |= E1 7→ E2 iff ∃l, n, σ′. {{(E1, E2)}}σ′ = (l, n)

∧σ = σ′] {l n} ∧∆ = •
(σ,∆) |= x Z⇒ E iff ∃n, θ. {{E}}σ = n ∧ θ = {x n}

∧∆ = {(∅, θ)}
(σ,∆) |= E1 � (γ,E2) iff ∃σ1, σ2, t, n. σ = σ1] σ2

∧{{E1}}σ1 = t ∧ {{E2}}σ2 =n
∧∆ = {({t (γ, n)}, ∅)}

(σ,∆) |= E1 � (end, E2) iff ∃σ1, σ2, t, n. σ = σ1] σ2

∧{{E1}}σ1 = t ∧ {{E2}}σ2 =n
∧∆ = {({t (end, n)}, ∅)}

Σ |= p ∗ q iff ∃Σ1,Σ2. Σ = Σ1 ∗ Σ2 ∧ Σ1 |= p ∧ Σ2 |= q

Σ |= p⊕ q iff ∃Σ1,Σ2. Σ = Σ1 ⊕ Σ2 ∧ Σ1 |= p ∧ Σ2 |= q

SpecExact(p) iff ∀∆,∆′. ((,∆) |=p) ∧ ((,∆′) |=p) =⇒ (∆=∆′)

Exact(p) iff ∀Σ,Σ′. (Σ |= p) ∧ (Σ′ |= p) =⇒ (Σ = Σ′)

Precise(p) iff
∀Σ1,Σ2,Σ′1,Σ

′
2. (Σ1 ∗ Σ2 = Σ′1 ∗ Σ′2) ∧ (Σ1 |= p) ∧ (Σ2 |= p)

=⇒ (Σ1 = Σ2)

Sta(p,R) iff ∀Σ,Σ′. (Σ |= p) ∧ ((Σ,Σ′) |= R) =⇒ Σ′ |= p

Figure 9. Semantics of State Assertions

4. A Relational Rely-Guarantee Style Logic
To prove object linearizability, we first instrument the object imple-
mentation by introducing auxiliary states and auxiliary commands,
which relate the concrete code with the abstract object and oper-
ations. Our program logic extends LRG [8] with a relational in-
terpretation of assertions and new rules for auxiliary commands.
Although our logic is based on LRG [8], this approach is mostly in-

7 2013/4/20

[E1, p]γ[E2, q]

`t {t� (γ,E1) ∗ p}linself{t� (end, E2) ∗ q}
(LINSELF)

`t {t� (end, E)}linself{t� (end, E)}
(LINSELF-END)

[E1, p]γ[E2, q]

`t {E � (γ,E1) ∗ p}lin(E){E � (end, E2) ∗ q}
(LIN)

`t {E � (end, E′)}lin(E){E � (end, E′)}
(LIN-END)

[E1, p]γ[E2, q]

`t {t� (γ,E1) ∗ p}trylinself{(t� (γ,E1) ∗ p)⊕ (t� (end, E2) ∗ q)}
(TRYSELF)

`t {t� (end, E)}trylinself{t� (end, E)}
(TRYSELF-END)

[E1, p]γ[E2, q]

`t {E � (γ,E1) ∗ p}trylin(E){(E � (γ,E1) ∗ p)⊕ (E � (end, E2) ∗ q)}
(TRY)

`t {E � (end, E′)}trylin(E){E � (end, E′)}
(TRY-END)

SpecExact(p) p′ ⇒ p

`t {p′ ⊕ true}commit(p){p′}
(COMMIT)

`t {p1}commit(p){q} p2 - p

`t {p1 ⊕ p2}commit(p){q}
(COMMIT-SPEC-CONJ)

Exact({p1, p2}) p1 ⊕ p2 is satisfiable
`t {p}commit(p1){q1} `t {p}commit(p2){q2}

`t {p}commit(p1 ⊕ p2){q1 ⊕ q2}
(MULTI-COMMIT)

`t {t� (end, E)}E[return E]{t� (end, E)}
(RET)

`t {p}C̃{q}

`t {p ∗ r}C̃{q ∗ r}
(FRAME)

`t {p}C̃{q} `t {p′}C̃{q′}

`t {p⊕ p′}C̃{q ⊕ q′}
(SPEC-CONJ)

`t {p}C̃{q}

Emp,Emp, emp `t {p}C̃{q}
(ENV)

`t {p}C̃{q} (p n q)⇒ G ∗ True p ∨ q ⇒ I ∗ true I . G

[I], G, I `t {p}〈C̃〉{q}
(ATOM)

[I], G, I `t {p}〈C̃〉{q} Sta({p, q}, R ∗ Id) I . R

R,G, I `t {p}〈C̃〉{q}
(ATOM-R)

R,G, I `t {p}C̃1{q} R,G, I `t {q}C̃2{r}

R,G, I `t {p}C̃1; C̃2{r}
(P-SEQ)

R,G, I `t {p ∗B}C̃{p ∗ (B=B)} p⇒ I

R,G, I `t {p ∗ (B=B)}while (B){C̃}{p ∗ ¬B}
(P-WHILE)

R,G, I `t {p ∗B}C̃1{q} R,G, I `t {p ∗ ¬B}C̃2{q} p⇒ I

R,G, I `t {p ∗ (B=B)}if (B) C̃1 else C̃2{q}
(P-IF)

R,G, I `t {p}C̃{q} p′ ⇒ p q ⇒ q′ R′ ⇒ R G⇒ G′ p′ ∨ q′ ⇒ I′ ∗ true I′ . {R′, G′}

R′, G′, I′ `t {p′}C̃{q′}
(P-CONSEQ)

R,G, I `t {p}C̃{q} Sta(r,R′ ∗ Id) I′ . {R′, G′} r ⇒ I′ ∗ true

R ∗R′, G ∗G′, I ∗ I′ `t {p ∗ r}C̃{q ∗ r}
(P-FRAME)

Figure 11. Selected Inference Rules

dependent with the base logic. Similar extensions can also be made
over other logics, such as RGSep [31].

Our logic is proposed to verify object methods only. Verified
object methods are guaranteed to be a contextual refinement of
their abstract atomic operations, which ensures linearizability of
the object. We discuss verification of whole programs consisting of
both client code and object code at the end of Sec. 4.3.

4.1 Instrumented Code and States
In Fig. 8 we show the syntax of the instrumented code and its
state model. As explained in Sec. 2, program states Σ for the
object method executions now consist of two parts, the physical
object states σ and the auxiliary data ∆. ∆ is a nonempty set of
(U, θ) pairs, each pair representing a speculation of the situation
at the abstract level. Here θ is the current abstract object, and

U is a pending thread pool recording the remaining operation to
be fulfilled by each thread. It maps a thread id to its remaining
abstract operation, which is either (γ, n) (the operation γ needs to
be executed with argument n) or (end, n) (the operation has been
finished with the return value n). We assume ∆ is always domain-
exact, defined as follows:

DomExact(∆)
def
= ∀U, θ, U ′, θ′. (U, θ) ∈ ∆ ∧ (U ′, θ′) ∈ ∆

=⇒ dom(U)=dom(U ′) ∧ dom(θ)=dom(θ′) .

It says, all the speculations in ∆ should describe the same set of
threads and the same domain of abstract objects. Any ∆ containing
a single speculation is domain-exact. Also domain-exactness can
be preserved under the step of any command in our instrumented
language, thus it is reasonable to assume it always holds.

8 2013/4/20

(Σ,Σ′) |= p n q iff Σ |= p ∧ Σ′ |= q

(Σ,Σ′) |= [p] iff Σ |= p ∧ Σ = Σ′

(Σ,Σ′) |= R1 ∗R2 iff
∃Σ1,Σ2,Σ′1,Σ

′
2. (Σ = Σ1 ∗ Σ2) ∧ (Σ′ = Σ′1 ∗ Σ′2)

∧ (Σ1,Σ′1) |= R1 ∧ (Σ2,Σ′2) |= R2

(Σ,Σ′) |= R1 ⊕R2 iff
∃Σ1,Σ2,Σ′1,Σ

′
2. (Σ = Σ1 ⊕ Σ2) ∧ (Σ′ = Σ′1 ⊕ Σ′2)

∧ (Σ1,Σ′1) |= R1 ∧ (Σ2,Σ′2) |= R2

Id
def
= [true] Emp

def
= emp n emp True

def
= true n true

(∅, n)
γ−→ (∅, n′)

γ(n)(θ) = (n′, θ′) (∆, n)
γ−→ (∆′, n′)

({(U, θ)}]∆, n)
γ−→ ({(U, θ′)}]∆′, n′)

[E, p]γ[E′, q] iff
∀σ,∆, n. (σ,∆) |= (E=n) ∗ p
=⇒ ∃∆′, n′. (∆, n)

γ−→ (∆′, n′) ∧ ((σ,∆′) |= (E′=n′) ∗ q)

I . R iff ([I]⇒ R) ∧ (R⇒ I n I) ∧ Precise(I)

Figure 10. Semantics of Actions

Below we informally explain the effects over ∆ of the newly
introduced commands. We leave their formal semantics to Sec. 4.4.
The auxiliary command linself executes the unfinished abstract op-
eration of the current thread in every U in ∆, and changes the ab-
stract object θ correspondingly. lin(E) executes the abstract opera-
tion of the thread with id E. linself or lin(E) is executed when we
know for sure that a step is the linearization point. The trylinself
command introduces uncertainty. Since we do not know if the ab-
stract operation of the current thread is fulfilled or not at the cur-
rent point, we consider both possibilities. For each (U, θ) pair in ∆
that contains unfinished abstract operation of the current thread, we
add in ∆ a new speculation (U ′, θ′) where the abstract operation
is done and θ′ is the resulting abstract object. Since the original
(U, θ) is also kept, we have both speculations in ∆. Similarly, the
trylin(E) command introduces speculations about the thread E.
When we have enough knowledge p about the situation of the ab-
stract objects and operations, the commit(p) step keeps only the
subset of speculations consistent with p and drops the rest. Here p
is a logical assertion about the state Σ, which is explained below.

4.2 Assertions
Syntax of assertions is shown in Fig. 8. Following rely-guarantee
style reasoning, assertions are either single state assertions p and q
or binary rely/guarantee conditions R and G. Note here states refer
to the relational states Σ.

We use standard separation logic assertions such as true, E1 =
E2, emp and E1 7→ E2 to specify the memory σ. As shown in
Fig. 9, their semantics is almost standard, but for E1 = E2 to hold
over σ we require the domain of σ contains only the free variables
in E1 and E2. Here we use {{E}}σ to evaluate E with the extra
requirement that σ contains the exact resource to do the evaluation.

New assertions are introduced to specify ∆. x Z⇒ E specifies
the abstract object θ in ∆, with no speculations of U (abstract
operations), while E1 � (γ,E2) (and E1 � (end, E2)) specifies
the singleton speculation ofU . Semantics of separating conjunction
p ∗ q is similar as in separation logic, except that it is now lifted
to assertions over the relational states Σ. Note that the underlying
“disjoint union” over ∆ for separating conjunction should not be
confused with the normal disjoint union operator over sets. The
former (denoted as ∆1∗∆2 in Fig. 9) describes the split of pending
thread pools and/or abstract objects. For example, the left side ∆ in
the following equation specifies two speculations of threads t1 and
t2 (we assume the abstract object part is empty and omitted here),

and it can be split into two sets ∆1 and ∆2 on the right side, each
of which describes the speculations of a single thread.{

t1 Υ1

t2 Υ2
,

t1 Υ1

t2 Υ′2

}
=

{ t1 Υ1 }
∗

{ t2 Υ2 , t2 Υ′2 }

The most interesting new assertion is p ⊕ q, where p and q
specify two different speculations. It is this assertion that reflects
uncertainty about the abstract level. However, the readers should
not confuse ⊕ with disjunction. It is more like conjunction since it
says ∆ contains both speculations satisfying p and those satisfying
q. As an example, the above equation could be formulated at the
assertion level using ∗ and ⊕:

(t1 � Υ1 ∗ t2 � Υ2)⊕ (t1 � Υ1 ∗ t2 � Υ′2)
⇔ t1 � Υ1 ∗ (t2 � Υ2 ⊕ t2 � Υ′2)

Rely and guarantee assertions specify transitions over Σ. Here
we follow the syntax of LRG [8], with a new assertion R1 ⊕ R2

specifying speculative behaviors of the environment. The semantics
is given in Fig. 10. We will show the use of the assertions in the
examples of Sec. 6.

4.3 Inference Rules
The rules of our logic are shown in Fig. 11. Rules on the top half are
for sequential Hoare-style reasoning. They are proposed to verify
code C̃ in the atomic block 〈C̃〉. The judgment is parameterized
with the id t of the current thread.

For the linself command, if the abstract operation γ of the cur-
rent thread has not been done, this command will finish it. Here
[E1, p]γ[E2, q] in the LINSELF rule describes the behavior of γ,
which transforms abstract objects satisfying p to new ones satisfy-
ing q. E1 and E2 are the argument and return value respectively.
The definition is given in Fig. 10. The LINSELF-END rule says
linself has no effects if we know the abstract operation has been
finished. The LIN rule and LIN-END rule are similar.

The TRY rule says that if the thread E has not finished the
abstract operation γ, it can do speculation using trylin(E). The
resulting state contains both cases, one says γ does not progress at
this point and the other says it does. If the current thread has already
finished the abstract operation, trylin(E) would have no effects, as
shown in the TRY-END rule. The TRYSELF rule and TRYSELF-END
rule are similar.

The above rules require us to know for sure either the abstract
operation has been finished or not. If we want to support uncertainty
in the pre-condition, we could first consider different cases and then
apply the SPEC-CONJ rule, which is like the conjunction rule in
traditional Hoare logic.

The COMMIT rule allows us to commit to a specific speculation
and drop the rest. commit(p) keeps only the speculations satisfy-
ing p. We require p to describe an exact set of speculations, as de-
fined by SpecExact(p) in Fig. 9. For example, the following p1 is
speculation-exact, while p2 is not:

p1
def
= t� (γ, n)⊕ t� (end, n′)

p2
def
= t� (γ, n) ∨ t� (end, n′)

In all of our examples in Sec. 6, the assertion p in commit(p)
describes a singleton speculation, so SpecExact(p) trivially holds.

We also have the rules COMMIT-SPEC-CONJ and MULTI-
COMMIT to handle more complex cases. The COMMIT-SPEC-CONJ
allows to extend the precondition with some useless speculations
satisfying p2, where p2 - p (defined in Figure 12) says the spec-
ulations satisfying p2 should all be dropped for commit(p). The
MULTI-COMMIT rule allows us to commit both speculations satis-
fying p1 and those satisfying p2, where p1 and p2 must be exact on
both the concrete state and the speculation set (we define Exact(p)

9 2013/4/20

in Figure 9). The simple COMMIT rule is sufficient for all the exam-
ples we have verified, and we introduce the COMMIT-SPEC-CONJ
and MULTI-COMMIT rules for interests only. We will discuss their
possible use in Appendix B.

Before the current thread returns, it must know its abstract
operation has been done, as required in the RET rule. We also have
a standard FRAME rule as in separation logic for local reasoning.

Rules in the bottom half show how to do rely-guarantee style
concurrency reasoning, which are very similar to those in LRG [8].
As in LRG, we use a precise invariant I to specify the boundary
of the well-formed shared resource. The ATOM rule says we could
reason sequentially about code in the atomic block. Then we can
lift it to the concurrent setting as long as its effects over the shared
resource satisfy the guaranteeG, which is fenced by the invariant I .
In this step we assume the environment does not update shared re-
source, thus using Id as the rely condition (see Fig. 10). To allow
general environment behaviors, we should apply the ATOM-R rule
later, which requires that R be fenced by I and the pre- and post-
conditions be stable with respect to R. Here Sta({p, q}, R) re-
quires that p and q be stable with respect to R, a standard require-
ment in rely-guarantee reasoning.

To simplify the reasoning, we assume the return command
return E occurs only at the end of the implementation code. It
is not difficult to perform a pre-parser and transform any code to
this form. In the example proofs in Sec. 6 and Appendix E, we
sometimes still keep the original code although the reasoning is
supposed to be done for transformed code.

Linking with client program verification. Our relational logic is
introduced for object verification, but it can also be used to verify
client code, since it is just an extension over the general-purpose
concurrent logic LRG (which includes the rule for parallel com-
position). Moreover, as we will see in Sec. 5, our logic ensures
contextual refinement. Therefore, to verify a programW , we could
replace the object implementation with the abstract operations and
verify the corresponding abstract program W instead. Since W ab-
stracts away concrete object representation and method implemen-
tation details, this approach provides us with “separation and in-
formation hiding” [25] over the object, but still keeps enough in-
formation (i.e., the abstract operations) about the method calls in
concurrent client verification.

4.4 Semantics and Partial Correctness
We first show some key operational semantics rules for the instru-
mented code in Fig. 12.

A single step execution of the instrumented code by thread
t is represented as (C̃,Σ) ↪−→ t (C̃′,Σ′). When we reach the
return E command (the second rule), we require that there be no
uncertainty about thread t at the abstract level in ∆. That is, in every
speculation in ∆, we always know t’s operation has been finished
with the same return valueE. Meanings of the auxiliary commands
have been explained before. Here we use the auxiliary definition
∆→t ∆′ to formally define their transitions over ∆. The semantics
of commit(p) requires p to be speculation-exact (see Fig. 9). Also
it uses (σ,∆)|p = (σ′,∆′) to filter out the wrong speculations. To
ensure locality, this filter allows ∆ to contain some extra resource
such as the threads and their abstract operations other than those
described in p. For example, the following ∆ describes two threads
t1 and t2, but we could mention only t1 in commit(p).

∆ :

{
t1 (γ1, n1)
t2 (γ2, n2)

,
t1 (end, n′1)
t2 (end, n′2)

}
If p is t1 � (γ1, n1), then commit(p) will keep only the left
speculation and discard the other. p can also be t1 � (γ1, n1) ⊕
t1 � (end, n′1), then commit(p) will keep both speculations.

(C, σ) −_ t (C′, σ′) C 6= E[return]

(C, (σ,∆)) ↪−→ t (C′, (σ′,∆))

∀U. (U,)∈∆ =⇒ U(t)=(end, JEKσ)

(E[return E], (σ,∆)) ↪−→ t (skip, (σ,∆))

∆→t ∆′

(E[linself], (σ,∆)) ↪−→ t (E[skip], (σ,∆′))

JEKσ = t′ ∆→t′ ∆′

(E[lin(E)], (σ,∆)) ↪−→ t (E[skip], (σ,∆′))

∆→t ∆′

(E[trylinself], (σ,∆)) ↪−→ t (E[skip], (σ,∆∪∆′))

JEKσ = t′ ∆→t′ ∆′

(E[trylin(E)], (σ,∆)) ↪−→ t (E[skip], (σ,∆∪∆′))

SpecExact(p) (σ,∆)|p = (,∆′)

(E[commit(p)], (σ,∆)) ↪−→ t (E[skip], (σ,∆′))

(C̃,Σ) ↪−→ t (C̃′,Σ′)

(C̃,Σ)
R
↪−→ t (C̃′,Σ′)

(Σ,Σ′) |= R

(C̃,Σ)
R
↪−→ t (C̃,Σ′)

Auxiliary Definitions:

U(t) = (γ, n) γ(n)(θ) = (n′, θ′)

(U, θ) 99Kt (U{t (end, n′)}, θ′)
U(t) = (end, n)

(U, θ) 99Kt (U, θ)

∅ →t ∅
(U, θ) 99Kt (U ′, θ′) ∆→t ∆′

{(U, θ)}]∆ →t {(U ′, θ′)} ∪∆′

(σ,∆)|p = (σ′,∆′) iff
∃σ′′,∆′′,∆p. (σ = σ′]σ′′) ∧ (∆ = ∆′]∆′′) ∧ ((σ′,∆p) |= p)

∧ (∆′|dom(∆p) = ∆p) ∧ (∆′′|dom(∆p) ∩∆p = ∅)

∆|D
def
= {(U,θ) | dom({(U,θ)})=D∧ ∃U ′,θ′. (U]U ′, θ]θ′)∈∆}

dom(∆)
def
= (dom(U), dom(θ)) where (U, θ) ∈ ∆

q - p iff ∀∆,∆p. (,∆) |=q ∧ (,∆p) |=p =⇒ (∆|dom(∆p)∩∆p = ∅)

Figure 12. Operational Semantics in the Relational State Model

Given the thread-local semantics, we could next define the tran-
sition (C̃,Σ)

R
↪−→ t (C̃,Σ), which describes the behavior of thread

t with interference R from the environment.

Semantics preservation by the instrumentation. It is easy to see
that the newly introduced auxiliary commands do not change the
physical state σ, nor do they affect the program control flow. Thus
the instrumentation does not change program behaviors, unless the
auxiliary commands are inserted into the wrong places and they get
stuck, but this can be prevented by our program logic.

Soundness w.r.t. partial correctness. Following LRG [8], we
could give semantics of the logic judgment asR,G, I |=t {p}C̃{q},
which encodes partial correctness of C̃ w.r.t. the pre- and post-
conditions. We could prove the logic ensures partial correctness by
showing R,G, I `t {p}C̃{q} implies R,G, I |=t {p}C̃{q}. The
details are shown in Appendix C. In the next section, we give a
stronger soundness of the logic, i.e. soundness w.r.t. linearizability.

5. Soundness via Simulation
Our logic intuitively relates the concrete object code with its ab-
stract level specification. In this section we formalize the intuition
and prove that the logic indeed ensures object linearizability. The

10 2013/4/20

proof is constructed in the following steps. We propose a new rely-
guarantee-based forward-backward simulation between the con-
crete code and the abstract operation. We prove the simulation is
compositional and implies contextual refinement between the two
sides, and our logic indeed establishes such a simulation. Thus the
logic establishes contextual refinement. Finally we get linearizabil-
ity following Theorem 6.

Below we first define a rely-guarantee-based forward-backward
simulation. It extends RGSim [18] with the support of the helping
mechanism and speculations.

Definition 7 (Simulation for Method). (x,C) �t
R;G;p γ iff

∀n, σ,∆. (σ,∆) |= (t� (γ, n) ∗ (x = n) ∗ p)
=⇒ (C; noret, σ) �t

R;G;p ∆ .

Whenever (C, σ) �t
R;G;p ∆, we have the following:

1. if C 6= E[return], then
(a) for any C′ and σ′, if (C, σ) −_ t (C′, σ′),

then there exists ∆′ such that ∆⇒ ∆′,
((σ,∆), (σ′,∆′)) |= (G ∗ True) and (C′, σ′) �t

R;G;p ∆′;

(b) (C, σ) 6−_ t abort;
2. for any σ′ and ∆′, if ((σ,∆), (σ′,∆′)) |= (R ∗ Id),

then (C, σ′) �t
R;G;p ∆′;

3. if C = E[return E], then there exists n′ such that JEKσ = n′

and (σ,∆) |= (t� (end, n′) ∗ (x =) ∗ p).

As in RGSim, (x,C) �t
R;G;p γ says, the implementation C

is simulated by the abstract operation γ under the interference
with the environment, which is specified by R and G. The new
simulation holds if the executions of the concrete codeC are related
to the speculative executions of some ∆. The ∆ could specify
abstract operations of other threads that might be helped, as well as
the current thread t. Initially, the abstract operation of t is γ, with
the same argument n as the concrete side (i.e., x = n). The abstract
operations of other threads can be known from the precondition p.

For each step of the concrete code C, we require it to be safe,
and correspond to some steps of ∆, as shown in the first condition
in Definition 7. We define the transition ∆⇒ ∆′ as follows.

∆⇒ ∆′ iff ∀U ′, θ′. (U ′, θ′) ∈ ∆′

=⇒ ∃U, θ. (U, θ) ∈ ∆ ∧ (U, θ) 99K∗ (U ′, θ′) ,

where (U, θ) 99K (U ′, θ′)
def
= ∃t. (U, θ) 99Kt (U ′, θ′)

and (U, θ) 99Kt (U ′, θ′) has been defined in Fig. 12.

It says, any (U ′, θ′) pair in ∆′ should be “reachable” from ∆.
Specifically, we could execute the abstract operation of some thread
t′ (which could be the current thread t or some others), or drop
some (U, θ) pair in ∆. The former is like a step of trylin(t′) or
lin(t′), depending on whether or not we keep the original abstract
operation of t′. The latter can be viewed as a commit step, in which
we discard the wrong speculations.

We also require the related steps at the two levels to satisfy
the guarantee G ∗ True, G for the shared part and True (arbitrary
transitions) for the local part. Symmetrically, the second condition
in Definition 7 says, the simulation should be preserved under the
environment interference R ∗ Id, R for the shared part and Id
(identity transitions) for the local part.

Finally, when the method returns (the last condition in Defi-
nition 7), we require the current thread t has finished its abstract
operation, and the return values match at the two levels.

Like RGSim, our new simulation is compositional, thus can
ensure contextual refinement between the implementation and the
abstract operation, as shown in the following lemma.

Lemma 8 (Simulation Implies Contextual Refinement).
For any Π, Γ and ϕ, if there exist R, G, p and I such that the
following hold for all t,

Er(linself) def
= skip Er(trylinself) def

= skip Er(lin(E))
def
= skip

Er(trylin(E))
def
= skip Er(commit(p)) def

= skip Er(C)
def
= C

Er(〈C̃〉) def
= 〈Er(C̃) 〉 Er(C̃1; C̃2)

def
= Er(C̃1); Er(C̃2)

Er(if (B) C̃1 else C̃2)
def
= if (B) Er(C̃1) else Er(C̃2)

Er(while (B){C̃}) def
= while (B){Er(C̃)}

Figure 13. Erasure of Instrumented Code

1. for any f such that Π(f) = (x,C), we have Π(f) �t
Rt;Gt;pt

Γ(f),
and x 6∈ dom(I);

2. Rt =
∨

t′ 6=t Gt′ , I . {Rt, Gt}, pt ⇒ I , and Sta(pt, Rt);
3. bϕc ⇒

∧
t pt;

then Π vϕ Γ.

Here x 6∈ dom(I) means the formal argument x is always in the
local state, and bϕc lifts ϕ to a state assertion:

bϕc def
= {(σ, {(∅, θ)}) | ϕ(σ) = θ}.

Lemma 8 allows us to prove contextual refinement Π vϕ Γ by
showing the simulation Π(f) �t

Rt;Gt;pt
Γ(f) for each method f ,

where R, G and p are defined over the shared states fenced by the
invariant I , and the interference constraint Rt =

∨
t′ 6=t Gt′ holds

following Rely-Guarantee reasoning [17]. Its proof is similar to the
compositionality proofs of RGSim [18], but now we need to be
careful with the helping between threads and the speculations. We
give the formal proofs in Appendix C.

Lemma 9 (Logic Ensures Simulation for Method).
For any t, x, C, γ, R, G and p, if there exist I and C̃ such that

R,G, I `t {t� (γ, x) ∗ p} C̃ {t� (end,) ∗ (x =) ∗ p} ,

and Er(C̃) = (C; noret), then (x,C) �t
R;G;p γ.

Here we use Er(C̃) to erase the instrumented commands in C̃,
which is defined in Figure 13. The lemma shows that, verifying
C̃ in our logic establishes simulation between the original code
and the abstract operation. It is proved by first showing that our
logic ensures the standard rely-guarantee-style partial correctness
(see Sec. 4.4). Then we build the simulation by projecting the
instrumented semantics (Fig. 12) to the concrete semantics of C
(Fig. 5) and the speculative steps⇒ of ∆.

Finally, from Lemmas 8 and 9, we get the soundness theorem
of our logic, which says our logic can verify linearizability.

Theorem 10 (Logic Soundness). For any Π, Γ andϕ, if there exist
R, G, p and I such that the following hold for all t,

1. for any f , if Π(f) = (x,C), there exists C̃ such that

Rt, Gt, I `t {t�(Γ(f), x) ∗ pt} C̃ {t�(end,) ∗ (x=) ∗ pt} ,

Er(C̃) = (C; noret), and x 6∈ dom(I);
2. Rt =

∨
t′ 6=t Gt′ , pt ⇒ I , and Sta(pt, Rt);

3. bϕc ⇒
∧

t pt;

then Π vϕ Γ, and thus Π �ϕ Γ.

6. Examples
Our logic gives us an effective approach to verify linearizability.
As shown in Table 1, we have verified 12 algorithms, including
two stacks, three queues, four lists and three algorithms on atomic
memory reads or writes. Table 1 summarizes their features, includ-
ing the helping mechanism (Helping) and future-dependent LPs

11 2013/4/20

Objects Helping Fut. LP Java Pkg HS Book
Treiber stack [28]

√

HSY stack [14]
√ √

MS two-lock queue [22]
√

MS lock-free queue [22]
√ √ √

DGLM queue [6]
√

Lock-coupling list
√

Optimistic list [15]
√

Heller et al. lazy list [13]
√ √ √

Harris-Michael lock-free list
√ √ √ √

Pair snapshot [26]
√

CCAS [30]
√ √

RDCSS [12]
√ √

Table 1. Verified Algorithms Using Our Logic

readPair(int i, j) { local a, b, v, w;
{I ∗ (cid� (γ, (i, j)))}

1 while(true) {
{I ∗ (cid� (γ, (i, j))⊕ true)}

2 < a := m[i].d; v := m[i].v; >
{∃v′. (I ∧ readCell(i, a, v; v′)) ∗ (cid� (γ, (i, j))⊕ true)}

3 < b := m[j].d; w := m[j].v; trylinself; >

{∃v′. (I ∧ readCell(i, a, v; v′) ∧ readCell(j, b, w;)) ∗ afterTry}
4 if (v = m[i].v) {

{I ∗ (cid� (end, (a, b))⊕ true)}
5 commit(cid� (end, (a, b)));

{I ∗ (cid� (end, (a, b)))}
6 return (a, b);

{I ∗ (cid� (end, (a, b)))}
7 } } }
Auxiliary definitions:
readCell(i, d, v; v′)

def
= (cell(i, d, v) ∨ (cell(i, , v′) ∧ v 6= v′)) ∗ true

absRes
def
= (cid�(end, (a, b)) ∧ v′=v)∨(cid�(end, (, b)) ∧ v′ 6=v)

afterTry
def
= cid� (γ, (i, j))⊕ absRes⊕ true

Figure 14. Proof Outline of readPair in Pair Snapshot

(Fut. LP). Some of them are used in the java.util.concurrent
package (Java Pkg). The last column (HS Book) shows whether
it occurs in Herlihy and Shavit’s classic textbook on concurrent al-
gorithms [15]. We have almost covered all the fine-grained stacks,
queues and lists in the book. We can see that our logic supports
various objects ranging from simple ones with static LPs to sophis-
ticated ones with non-fixed LPs. Although many of the examples
can be verified using other approaches, we provide the first pro-
gram logic which is proved sound and useful enough to verify all
of these algorithms. The complete proofs of all the algorithms we
have verified are given in Appendix E.

In general we verify linearizability in the following steps. First
we instrument the code with the auxiliary commands such as
linself, trylin(E) and commit(p) at proper program points. The
instrumentation should not be difficult based on the intuition of
the algorithm. Then, we specify the assertions (as in Theorem 10)
and reason about the instrumented code by applying our inference
rules, just like the usual partial correctness verification in LRG. In
our experience, handling the auxiliary commands usually would
not introduce much difficulty over the plain verification with LRG.
Below we sketch the proofs of three representative examples: the
pair snapshot, MS lock-free queue and the CCAS algorithm.

6.1 Pair Snapshot
As discussed in Sec. 2.3, the pair snapshot algorithm has a future-
dependent LP. In Fig. 14, we show the proof of readPair for the
current thread cid. We will use γ for its abstract operation, which
atomically reads the cells i and j at the abstract level.

1 enq(v) {
2 local x, t, s, b;
3 x := cons(v, null);
4 while (true) {
5 t := Tail; s := t.next;
6 if (t = Tail) {
7 if (s = null) {
8 b:=cas(&(t.next),s,x);
9 if (b) {

10 cas(&Tail, t, x);
11 return; }
12 }else cas(&Tail, t, s);
13 }
14 }
15 }

16 deq() {
17 local h, t, s, v, b;
18 while (true) {
19 h := Head; t := Tail;
20 s := h.next;
21 if (h = Head)
22 if (h = t) {
23 if (s = null)
24 return EMPTY;
25 cas(&Tail, t, s);
26 }else {
27 v := s.val;
28 b:=cas(&Head,h,s);
29 if(b) return v; }
30 } }

Figure 15. MS Lock-Free Queue Code

First, we insert trylinself and commit as highlighted in Fig. 14.
The commit command says, when the validation at line 4 succeeds,
we must have cid� (end, (a, b)) as a possible speculation. This
actually requires a correct instrumentation of trylinself. In Fig. 14,
we insert it at line 3. It cannot be moved to other program points
since line 3 is the only place where we could get the abstract return
value (a, b) when executing γ. Besides, we cannot replace it by
a linself, because if line 4 fails later, we have to restart to do the
original abstract operation.

After the instrumentation, we can define the precise invariant I ,
the rely R and the guarantee G. The invariant I simply maps every
memory cell (d, v) at the concrete level to a cell with data d at the
abstract level, as shown below:

I
def
= ~i∈[1..size].(∃d, v. cell(i, d, v))

where cell(i, d, v)
def
= (m[i] 7→ (d, v)) ∗ (m[i] Z⇒ d))

Every thread guarantees that when writing a cell, it increases the
version number. Here we use [G]I short for (G∨ Id)∗ Id∧ (In I).
G

def
= [Write]I Write

def
= ∃i, v. cell(i, , v) n cell(i, , v + 1)

The rely R is the same as the guarantee G.
Then we specify the pre- and post-conditions, and reason about

the instrumented code using our inference rules. The proof follows
the intuition of the algorithm. Note that we relax cid� (γ, (i, j))
in the precondition of the method to cid � (γ, (i, j)) ⊕ true to
ensure the loop invariant. The latter says, cid may just start (or
restart) its operation and have not done yet.

The readPair method in the pair snapshot algorithm is “read-
only” in the sense that the abstract operation does not update the ab-
stract object. This perhaps means that it does not matter to linearize
the method multiple times. In Sec. 6.3 we will verify an algorithm
with future-dependent LPs, CCAS, which is not “read-only”. We
can still “linearize” a method with side effects multiple times.

6.2 MS Lock-Free Queue
The widely-used MS lock-free queue [22] also has future-dependent
LPs. We show its code in Fig. 15.

The queue is implemented as a linked list with Head and Tail
pointers. Head always points to the first node (a sentinel) in the list,
and Tail points to either the last or second to last node. The enq
method appends a new node at the tail of the list and advances
Tail, and deq replaces the sentinel node by its next node and
returns the value in the new sentinel. If the list contains only the
sentinel node, meaning the queue is empty, then deq returns EMPTY.

The algorithm employs the helping mechanism for the enq
method to swing the Tail pointer when it lags behind the end of
the list. A thread should first try to help the half-finished enq by
advancing Tail (lines 12 and 25 in Fig. 15) before doing its own
operation. But this helping mechanism would not affect the LP of
enq which is statically located at line 8 when the cas succeeds,

12 2013/4/20

since the new node already becomes visible in the queue after being
appended to the list, and updating Tail will not affect the abstract
queue. We simply instrument line 8 as follows to verify enq:

< b := cas(&(t.next), s, x); if (b) linself; >

On the other hand, the original queue algorithm [22] checks
Head or Tail (line 6 or 21 in Fig. 15) to make sure that its value
has not been changed since its local copy was read (at line 5
or 19), and if it fails, the operation will restart. This check can
improve efficiency of the algorithm, but it makes the LP of the deq
method for the empty queue case depend on future executions. That
LP should be at line 20, if the method returns EMPTY at the end
of the same iteration. The intuition is, when we read null from
h.next at line 20 (indicating the abstract queue must be empty
there), we do not know how the iteration would terminate at that
time. If the later check over Head at line 21 fails, the operation
would restart and line 20 may not be the LP. We can use our try-
commit instrumentation to handle this future-dependent LP. We
insert trylinself at line 20, as follows:

< s := h.next; if (h = t && s = null) trylinself; >

Before the method returns EMPTY, we commit to the finished ab-
stract operation, i.e., we insert commit(cid� (end, EMPTY)) just
before line 24. Also, when we know we have to do another itera-
tion, we can commit to the original DEQ operation, i.e., we insert
commit(cid� DEQ) at the end of the loop body.

For the case of nonempty queues, the LP of the deq method is
statically at line 28 when the cas succeeds. Thus we can instrument
linself there, as shown below.

< b := cas(&Head, h, s); if (b) linself; >

After the instrumentation, we can define I , R and G and verify
the code using our logic rules. The invariant I relates all the nodes
in the concrete linked list to the abstract queue. R and G specify
the related transitions at both levels, which simply include all the
actions over the shared states in the algorithm. The proof is similar
to the partial correctness proof using LRG, except that we have to
specify the abstract objects and operations in assertions and reason
about the instrumented code.

6.3 Conditional CAS
Conditional compare-and-swap (CCAS) [30] is a simplified version
of the RDCSS algorithm [12]. It involves both the helping mecha-
nism and future-dependent LPs. We show its code in Fig. 16.

The object contains an integer variable a, and a boolean bit
flag. The method SetFlag (line 19) sets the bit directly. The
method CCAS takes two arguments: an expected current value o of
the variable a and a new value n. It atomically updates a with the
new value if flag is true and a indeed has the value o; and does
nothing otherwise. CCAS always returns the old value of a.

The implementation in Fig. 16 uses a variant of cas: instead
of a boolean value indicating whether it succeeds, cas(&a,o,n)
returns the old value stored in a. When starting a CCAS, a thread
first allocates its descriptor (line 3), which contains the thread id
and the arguments for CCAS. It then tries to put its descriptor in
a (line 4). If successful (line 9), it calls the auxiliary Complete
function, which restores a to the new value n (line 15) or to the
original value o (line 17), depending on whether flag is true. If
it finds a contains a descriptor (i.e., IsDesc holds), it will try to
help complete the operation in the descriptor (line 6) before doing
its own. Since we disallow nested function calls to simplify the
language, the auxiliary Complete function should be viewed as a
macro.

The LPs of the algorithm are at lines 4, 7 and 13. If a contains a
different value from o at lines 4 and 7, then CCAS fails and they are
LPs of the current thread. We can instrument these lines as follows:

1 CCAS(o, n) {
2 local r, d;
3 d := cons(cid, o, n);
4 r := cas(&a, o, d);
5 while(IsDesc(r)) {
6 Complete(r);
7 r := cas(&a, o, d);
8 }
9 if(r = o) Complete(d);

10 return r; }

11 Complete(d) {
12 local b;
13 b := flag;
14 if (b)
15 cas(&a, d, d.n);
16 else
17 cas(&a, d, d.o);
18 }
19 SetFlag(b){ flag := b;}

Figure 16. CCAS Code

<r := cas(&a, o, d); if(r!=o && !IsDesc(r)) linself;>

If the descriptor d gets placed in a, then the LP should be in the
Complete function. Since any thread can call Complete to help
the operation, the LP should be at line 13 of the thread which will
succeed at line 15 or 17. It is a future-dependent LP which may be
in other threads’ code. We instrument line 13 using trylin(d.id)
to speculatively execute the abstract operation for the thread in d,
which may not be the current thread. That is, line 13 becomes:

< b := flag; if (a = d) trylin(d.id); >

The condition a=d requires that the abstract operation in the de-
scriptor has not been finished. Then at lines 15 and 17, we commit
the correct guess. We show the instrumentation at line 15 below
(where s is a local variable), and line 17 is instrumented similarly.

< s := cas(&a, d, d.n);
if(s = d) commit(d.id �(end, d.o) ∗ aZ⇒d.n); >

That is, it should be possible that the thread in d has finished the
operation, and the current abstract a is the new value n.

Then we can define I ,R andG, and verify the code by applying
the inference rules. The invariant I says, the shared state includes
flag and a at the abstract and the concrete levels; and when a is a
descriptor d, the descriptor and the abstract operation of the thread
d.id are also shared.

The rely R and the guarantee G should include the action
over the shared states at each line. The action at line 4 (or 7) is
interesting. If it succeeds, both the descriptor d and the abstract
operation will be transferred from the local state to the shared part.
This puts the abstract operation in the pending thread pool and
enables other threads to help execute it.

The action at line 13 guarantees TrylinSucc∨TrylinFail, which
demonstrates the use of our logic for both helping and speculation.

TrylinSucc
def
= (∃t, o, n. (flag Z⇒ true ∗ notDone(t, o, n))

n (flag Z⇒ true ∗ endSucc(t, o, n)))⊕ Id

where notDone(t, o, n)
def
= t� (CCAS, o, n) ∗ a Z⇒ o

endSucc(t, o, n)
def
= t� (end, o) ∗ a Z⇒ n

TrylinFail is symmetric for the case when flag Z⇒ false. Here
we use R ⊕ Id (defined in Fig. 9) to describe the action of trylin.
It means, after the action we will keep the original state as well
as the new state resulting from R as possible speculations. Also,
in TrylinSucc and TrylinFail, the current thread is allowed to help
execute the abstract CCAS of some thread t.

The subtle part in the proof is to ensure that, no thread could
cheat by imagining another thread’s help. In any program point
of CCAS, the environment may have done trylin and helped the
operation. But whether the environment has helped it or not, the
commit at line 15 or 17 cannot fail. This means, we should not
confuse the two kinds of nondeterminism caused by speculation
and by environment interference. The former allows us to discard
wrong guesses, while for the latter, we should consider all possible
environments (including none).

13 2013/4/20

7. Related Work and Conclusion
In addition to the work mentioned in Sec. 1 and 2, there is a large
body of work on linearizability verification. Here we only discuss
the most closely related work that can handle non-fixed LPs.

Our logic is similar to Vafeiadis’ extension of RGSep to prove
linearizability [31]. He also uses abstract objects and abstract
atomic operations as auxiliary variables and code. There are two
key differences between the logics. First he uses prophecy variables
to handle future-dependent LPs, but there has been no satisfactory
semantics given for prophecy variables so far. We use the simple
try-commit mechanism, whose semantics is straightforward. Sec-
ond the soundness of his logic w.r.t. linearizability is not specified
and proved. We address this problem by defining a new thread-
local simulation as the meta-theory of our logic. As we explained
in Sec. 2, defining such a simulation to support non-fixed LPs is one
of the most challenging issues we have to solve. Although recently
Vafeiadis develops an automatic verification tool [32] with formal
soundness for linearizability, his new work can handle non-fixed
LPs for read-only methods only, and cannot verify algorithms like
HSY stack, CCAS and RDCSS in our paper.

Recently, Turon et al. [30] propose logical relations to ver-
ify fine-grained concurrency, which establish contextual refinement
between the library and the specification. Underlying the model a
similar simulation is defined. Our pending thread pool is proposed
concurrently with their “spec thread pool”, while the speculation
idea in our simulation is borrowed from their work, which traces
back to forward-backward simulation [20]. What is new here is
a new program logic and the way we instrument code to do re-
lational reasoning. The set of syntactic rules, including the try-
commit mechanism to handle uncertainty, is much easier to use
than the semantic logical relations to construct proofs. On the other
hand, they support higher-order features, recursive types and poly-
morphism, while we focus on concurrency reasoning and use only
a simple first-order language.

O’Hearn et al. [24] prove linearizability of an optimistic variant
of the lazy set algorithm by identifying the “Hindsight” property of
the algorithm. Their Hindsight Lemma provides a non-constructive
evidence for linearizability. Although Hindsight can capture the
insights of the set algorithm, it remains an open problem whether
the Hindsight-like lemmas exist for other concurrent algorithms.

Colvin et al. [3] formally verify the lazy set algorithm using
a combination of forward and backward simulations between au-
tomata. Their simulations are not thread-local, where they need to
know the program counters of all threads. Besides, their simula-
tions are specifically constructed for the lazy set only, while ours is
more general in that it can be satisfied by various algorithms.

The simulations defined by Derrick et al. [4] are thread-local
and general, but they require the operations with non-fixed LPs to
be read-only, thus cannot handle the CCAS example. They also pro-
pose a backward simulation to verify linearizability [27]. Although
the method is proved to be complete, it does not support thread-
local verification and there is no program logic given.

Elmas et al. [7] prove linearizability by incrementally rewriting
the fine-grained code to the atomic operation. They do not need to
locate LPs. Their rules are based on left/right movers and program
refinements, but not for Hoare-style reasoning as in our work.

There are also lots of model-checking based tools (e.g., [19, 33])
for checking linearizability. For example, Vechev et al. [33] check
linearizability with user-specified non-fixed LPs. Their method is
not thread modular. To handle non-fixed LPs, they need users to
instrument the code with enough information about the actions of
other threads, which usually demands a priori knowledge about the
number of threads running in parallel, as shown in their example.
Besides, although their checker can detect un-linearizable code, it
will not terminate for linearizable methods in general.

Conclusion. We propose a new program logic to verify lin-
earizability of algorithms with non-fixed LPs. The logic extends
LRG [8] with new rules for the auxiliary commands introduced
specifically for linearizability proof. We also give a relational in-
terpretation of asssertions and rely/guarantee conditions to relate
concrete implementations with the corresponding abstract opera-
tions. Underlying the logic is a new thread-local simulation, which
gives us contextual refinement. Linearizability is derived based on
its equivalence to refinement. Both the logic and the simulation sup-
port reasoning about the helping mechanism and future-dependent
LPs. As shown in Table 1, we have applied the logic to verify
various classic algorithms.

Acknowledgments
We would like to thank Matthew Parkinson, Zhong Shao, Jan Hoff-
mann and anonymous referees for their suggestions and comments
on earlier versions of this paper. This work is supported in part
by grants from National Natural Science Foundation of China
(NSFC) under Grant No. 61073040 and 61229201, the National
Hi-Tech Research and Development Program of China (Grant No.
2012AA010901), and Program for New Century Excellent Talents
in Universities (Grant No. NCET-2010-0984). Part of the work is
done during Hongjin Liang’s visit to Yale University in 2012-2013,
which is supported by China Scholarship Council.

References
[1] M. Abadi and L. Lamport. The existence of refinement mappings.

Theor. Comput. Sci., 82(2):253–284, 1991.
[2] D. Amit, N. Rinetzky, T. Reps, M. Sagiv, and E. Yahav. Comparison

under abstraction for verifying linearizability. In CAV’07.
[3] R. Colvin, L. Groves, V. Luchangco, and M. Moir. Formal verification

of a lazy concurrent list-based set algorithm. In CAV’06.
[4] J. Derrick, G. Schellhorn, and H. Wehrheim. Verifying linearisability

with potential linearisation points. In FM’11.
[5] J. Derrick, G. Schellhorn, and H. Wehrheim. Mechanically verified

proof obligations for linearizability. ACM TOPLAS, 33(1):4, 2011.
[6] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Formal verifica-

tion of a practical lock-free queue algorithm. In FORTE’04.
[7] T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Tasiran. Simplifying

linearizability proofs with reduction and abstraction. In TACAS’10.
[8] X. Feng. Local rely-guarantee reasoning. In POPL’09.
[9] I. Filipović, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for

concurrent objects. Theor. Comput. Sci., 2010.
[10] A. Gotsman and H. Yang. Linearizability with ownership transfer. In

CONCUR’12.
[11] T. L. Harris. A pragmatic implementation of non-blocking linked-lists.

In DISC’01.
[12] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word

compare-and-swap operation. In DISC’02.
[13] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer III, and

N. Shavit. A lazy concurrent list-based set algorithm. In OPODIS’05.
[14] D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack

algorithm. In SPAA’04.
[15] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.

Morgan Kaufmann, Apr. 2008.
[16] M. Herlihy and J. Wing. Linearizability: a correctness condition for

concurrent objects. ACM TOPLAS, 12(3):463–492, 1990.
[17] C. B. Jones. Tentative steps toward a development method for inter-

fering programs. ACM TOPLAS, 5(4):596–619, 1983.
[18] H. Liang, X. Feng, and M. Fu. A rely-guarantee-based simulation for

verifying concurrent program transformations. In POPL’12.
[19] Y. Liu, W. Chen, Y. A. Liu, and J. Sun. Model checking linearizability

via refinement. In FM’09.

14 2013/4/20

[20] N. A. Lynch and F. W. Vaandrager. Forward and backward simula-
tions: I. untimed systems. Inf. Comput., 121(2):214–233, 1995.

[21] M. M. Michael. High performance dynamic lock-free hash tables and
list-based sets. In SPAA’02.

[22] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In PODC’96.

[23] P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375(1-3):271–307, 2007.

[24] P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav, and G. Yorsh.
Verifying linearizability with hindsight. In PODC’10, .

[25] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and informa-
tion hiding. In POPL’04, .

[26] S. Qadeer, A. Sezgin, and S. Tasiran. Back and forth: Prophecy
variables for static verification of concurrent programs. Tech Report.

[27] G. Schellhorn, H. Wehrheim, and J. Derrick. How to prove algorithms
linearisable. In CAV’12.

[28] R. K. Treiber. System programming: coping with parallelism. Tech-
nical Report RJ 5118, IBM Almaden Research Center, 1986.

[29] A. Turon and M. Wand. A separation logic for refining concurrent
objects. In POPL’11.

[30] A. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer.
Logical relations for fine-grained concurrency. In POPL’13.

[31] V. Vafeiadis. Modular fine-grained concurrency verification. Thesis.

[32] V. Vafeiadis. Automatically proving linearizability. In CAV, 2010.

[33] M. T. Vechev, E. Yahav, and G. Yorsh. Experience with model check-
ing linearizability. In SPIN’09.

A. Proofs for Theorem 6 (Equivalence Between
Linearizability and Contextual Refinement)

A.1 Contextual Refinement Implies Linearizability
To prove this direction, for each concurrent history H of the object
o, we find a specific client W which can generate the observable
behavior B when using Π, and B approximates H . By contextual
refinement, we know B can also be produced by an abstract execu-
tion of W using Γ instead. Then we show the history H ′ generated
by this abstract execution is just the legal sequential history we
want to find: a completion of H is linearizable w.r.t. H ′.

Suppose each local variable has a special integer value UNDEF
if it has not been initialized. Also suppose clients could use an in-
struction print(f, n) to print out (t, out, (f, n)) atomically, where
t is the current thread ID, f is a string and n is an integer. It is rea-
sonable to allow a thread to print out its ID, since we can always
distinguish different threads of a client.

Then we say B approximates H , denoted by B ≈ H , if
each (t, out, (f, n)) in B corresponds to (t, f, n) in H , and each
(t, out, n) corresponds to (t, ok, n).

ε ≈ ε
λ ≈ e B ≈ H
λ ::B ≈ e ::H

where λ ≈ e is defined by:

• (t, out, (f, n)) ≈ (t, f, n) ;
• (t, out, n) ≈ (t, ok, n) ;
• (t, obj, abort) ≈ (t, obj, abort) .

On the concrete side, for any history H (generated by a client
W), we could have an observable behavior B (generated by a
client W ′) so that B approximates H . We construct W ′ using a
transformation T on W as follows: each method call x := f(E)
of thread t is transformed to the following code Ct,x,f,E , and the
program structure and other instructions are left unchanged.

T(W) ∈ Prog is defined inductively as follows:
T(skip)

def
= skip

T(let Π in C1‖ . . .‖Cn)
def
= let Π in T1(C1)‖ . . .‖Tn(Cn)

Tt(C) ∈ Stmt is inductively defined as follows:
Tt(skip)

def
= skip

Tt(c)
def
= c

Tt(x := f(E))
def
= Ct,x,f,E

Tt(return E)
def
= return E

Tt(noret) def
= noret

Tt(〈C〉)
def
= 〈C〉

Tt(if (B) C1 else C2)
def
= if (B) Tt(C1) else Tt(C2)

Tt(while (B){C}) def
= while (B){Tt(C)}

Tt(E) ∈ ExecContext is inductively defined as follows:
Tt([])

def
= []

Tt(E;C)
def
= Tt(E);Tt(C)

T(S) ∈ PState is defined as follows:
T(S)

def
= {(σ′c, σo,T(K)) | S = (σc, σo,K) ∧ σ′c ∈ T(σc)}

T(σc)
def
= {σc] (

⊎
t∈ThrdID{xt n, yt m}) | n,m ∈ Int}

T(K) ∈ ThrdPool is defined as follows:
T(K)

def
= {t Tt(κ) | K(t) = κ}

Tt(κ)
def
=

{
◦ if κ = ◦
(σl, xt,Tt(E)[C′t,x]) if κ = (σl, x,E[skip])

where C′t,x
def
= print(xt);x := xt

Figure 17. Correspondence for Code and States

Ct,x,f,E
def
=

local xt, yt;
1 yt := E;
2 print(f, yt);
3 xt := f(yt);
4 print(xt);
5 x := xt;

Note that the argument to the method call is recorded in xt and
the return value is recorded in yt. Both of these variables are
local to thread t. When x := f(E) in W goes one step, we let
Ct,x,f,E goes three steps (without interference from other threads)
to the same method body, thus the first print-outed event and the
invocation event are generated “atomically”. Similarly, when the
method body returns inW , we letW ′ goes three steps and generate
the return and the last print-outed events “atomically”. Thus the
observable behavior could approximate the history. The formal
inductive definition of T is given in Figure 17.

The following lemma says, there is an observable behavior that
approximates the concrete history.

Lemma 11. For any W , σc, σo and H , if H ∈ H [[W, (σc, σo)]],
then there exist σ′c and B such that σ′c ∈ T(σc), B ≈ H and
B ∈ O [[T(W), (σ′c, σo)]].

Proof: From H ∈ H [[W, (σc, σo)]], we know there exist S, config
(which could be a pair of code and state or abort) andH1 such that
S = init(σc, σo), (W,S)

H17−→k config and get hist(H1) = H .
By Lemma 12 below, we know there existH2, B, S ′ and config′

such that S ′ ∈ T(S), (T(W),S ′) H27−→∗ config′, get obsv(H2) =
B and B ≈ H .

Since S ′ ∈ T(S) and S = init(σc, σo), we know there exists
σ′c such that σ′c ∈ T(σc) and S ′ = init(σ′c, σo). Thus we get the
conclusion. �

15 2013/4/20

Lemma 12. For all k, W1, S1, S2, H1 and config1, if

1. (W1,S1)
H17−→k config1;

2. S2 ∈ T(S1),

then
∃config2, H2. get obsv(H2) ≈ get hist(H1)

∧ (T(W1),S2)
H27−→∗ config2.

Proof: By induction over k.
Base Case:
• k = 0. Trivial.
• k = 1 and config1 = (skip,S1). There must be no event

generated. Trivial.
• k = 1 and config1 = abort. Suppose the step is of the thread t.

The step produces an object abort event (t, obj, abort). We
know it must be a step inside the method body, thus it cannot
be x := f(E). The code of this step must be the same on
the target and the source sides. By the state transformation
in Figure 17, we know the target object state is the same
as the source object state, and the local state σl of t is the
same as the source. Thus the same step could be made on
the target side and the same abort event could be generated.
The step produces a client abort.
No history event is generated in H1, so we simply let
T(W1) go zero step and H2 = ε. Thus get obsv(H2) ≈
get hist(H1).

Inductive Step: k = n+ 1. We know

(W1,S1)
e7−→ (W ′1,S ′1) ∧ (W ′1,S ′1)

H′
17−→n config .

Due to the induction hypothesis, we only need to prove the follow-
ing:

∃S ′2, H2. (T(W1),S2)
H27−→∗ (T(W ′),S ′2)

∧ S ′2 ∈ T(S ′1) ∧ get obsv(H2) ≈ get hist(e) .

Proof sketch:

• If the first step of W1 is from x := f(E) to the method body
of the thread t, suppose the initial source code of t is E[x :=
f(E)] and the initial source state is (σc, σo, ◦), then by the
operational semantics we know: the resulting code is (C; noret)
and the resulting state is (σc, σo, κ), where Π(f) = (y, C),
JEKσc = n and κ = ({y n}, x,E[skip]). An invocation
event (t, f, n) is generated.
We know Tt(E[x := f(E)]) = Tt(E)[Ct,x,f,E]. Since
S2 ∈ T(S1), we know the initial state for the target code of t is
(σ′c, σo, ◦), where σ′c ∈ T(σc). We let the target code go three
steps.

The resulting target code is (C; noret). Since C is the
method body which does not contain method calls, we know
it is Tt(C; noret).
The target steps would not abort because σ′c is an extension
of σc, and thus JEKσ′

c
= n. Then the resulting state S ′2 is

(σ′′c , σo, κ
′), where
σ′′c = σ′c{yt n}, and
κ′ = ({y n}, xt,Tt(E)[C′t,x])

Thus σ′′c = T(σc) and κ′ = Tt(κ). Thus the resulting
target state S ′2 ∈ T(S ′1).
The target three steps produce H2 = (t, out, (f, n)) ::
(t, f, n). Thus get obsv(H2) ≈ get hist(e).

• If the first step of W1 is a return of the thread t, and sup-
pose the initial source code of t is E′[return E], the initial
source state is (σc, σo, κ) and the current stack frame κ =
(σl, x,E[skip]), then by the operational semantics, we know:
the resulting source code is E[skip] and the resulting state is
(σ′c, σo, ◦), where JEKσo]σl = n, and σ′c = σc{x n}.
We know Tt(E

′[return E]) = Tt(E
′)[return E]. Since

S2 ∈ T(S1), we know the initial state for the target code of t is
(σ′′c , σo, κ

′), where σ′′c ∈ T(σc), and κ′ = (σl, xt,Tt(E)[C′t,x]).
We let the target code go three steps.

The resulting target code is Tt(E)[skip], which is just
Tt(E[skip]).
The target steps would not abort. The resulting state S ′2 is
(σ′′′c , σo, ◦), where σ′′′c = σ′′c {x n, xt , yt }.
Thus the resulting target state S ′2 ∈ T(S ′1).
The target three steps produce H2 = (t, ok, n) :: (t, out, n).
Thus get obsv(H2) ≈ get hist(e).

• If the first step of W1 is a normal client step (the current call
stack κ = ◦), suppose the source state is S1 = (σc, σo,K),
by the state transformation, we know the target state S2 =
(σ′c, σo,T(K)), where σ′c is an extension of σc, and the target
stack frame of the thread t is ◦. By the operational semantic, we
know there is a corresponding target step.
• If the first step of W1 is a normal object step, by the state

transformation in Figure 17, we know the target object state and
local state in the call stack are the same as the source side. Thus
by the operational semantic, we know there is a corresponding
target step.

The formal proof needs stratified induction (according to the pro-
gram structure). �

Then we prove the following lemma, which says, at the abstract
side, the observable behavior is “linearizable” w.r.t. the abstract
history.

Lemma 13. For any W , σc, θ and B, if B ∈ O [[T(W), (σc, θ)]]
and B ≈ H1, then there exist Hc and H2 such that Hc ∈
completions(H1), Hc �lin H2, and H2 ∈ H [[T(W), (σc, θ)]].

Proof: From B ∈ O [[T(W), (σc, θ)]], we know there exist S,
config and H such that

S = init(σc, θ) , get obsv(H) = B , (T(W), S)
H
�−→∗ config .

Let H2 = get hist(H). Thus H2 ∈ H [[T(W), (σc, θ)]]. We want
to prove that

Goal: ∃Hc. Hc ∈ completions(H1) ∧ Hc �lin H2 .

Constructing Hc and Proving Linearizability Condition 1: By
the abstract operational semantics, we know that for any t, B|t and
H2|t must satisfy one of the following:

1. B|t ≈ H2|t ; or
2. ∃n. B|t :: (t, out, n) ≈ H2|t ; or
3. ∃f, n. B|t ≈ H2|t :: (t, f, n) .

Since B ≈ H1, we know, for any t, H1|t and H2|t must satisfy one
of the following:

1. H1|t = H2|t ; or
2. ∃n. H1|t :: (t, ok, n) = H2|t ; or
3. ∃f, n. H1|t = H2|t :: (t, f, n) .

We construct He as follows. For any t, if it is the above case
2, we append the corresponding return event at the end of H1.
Since well formed(H1) and well formed(H2), we could prove
well formed(He). Thus He ∈ extensions(H1). Also He satisfies:
for any t, one of the following holds:

16 2013/4/20

1. He|t = H2|t ; or
2. ∃f, n. He|t = H2|t :: (t, f, n) .

Let Hc = truncate(He). Thus Hc ∈ completions(H1). Since
∀t. is res(last(H2|t)) ∧ seq(H2|t), we could prove that for any t,

1. if He|t = H2|t, then Hc|t = He|t;
2. if He|t = H2|t :: (t, f, n), then Hc|t = H2|t.

Thus ∀t. Hc|t = H2|t.
Proving Linearizability Condition 2: We informally show that
the bijection π implicit in ∀t. Hc|t = H2|t preserves the response-
invocation order.

Let Hc(i) be a response event in Hc and let Hc(j) be an
invocation event. Then π(i) and π(j) are the indices of Hc(i) and
Hc(j) in H2 respectively. Suppose i < j. By the construction of
Hc fromH1, we know the same response and invocation events are
inH1, and the response happens before the invocation. Let i′ and j′

be the indices of these events in H1. Then i′ < j′. Since B′ ≈ H1,
we know i′ and j′ are exactly the indices of the corresponding
observable events in H1, and B′(i′) is a receive event and B′(j′)
is a send event. By the abstract operational semantics, we know in
H , the history return event is before the history invocation event
since the approximate receive event is before the approximate send
event. Thus π(i) < π(j). �

Finally, we get linearizability from contextual refinement, and
Lemmas 11 and 13.

Theorem 14 (Contextual Refinement Implies Linearizability).
If Π vϕ Γ, then Π �ϕ Γ.

Proof: We need to prove that
∀n,C1, . . . , Cn, σc, σo, θ,H.
H ∈ H [[(let Π in C1‖ . . .‖Cn), (σc, σo)]] ∧ (ϕ(σo) = θ)
=⇒ ∃Hc, H′. Hc ∈ completions(H) ∧ Γ B (θ,H′) ∧Hc �lin H

′

By Lemma 11, we know:
∃σ′c,B. σ′c ∈ T(σc) ∧ B ≈ H
∧ B ∈ O [[(let Π in T1(C1)‖ . . .‖Tn(Cn)), (σ′c, σo)]]

By the definition of Π vϕ Γ (Definition 5), we know:

B ∈ O [[(with Γ do T1(C1)‖ . . .‖Tn(Cn)), (σ′c, θ)]]

By Lemma 13, we know
∃Hc, H′. Hc ∈ completions(H) ∧Hc �lin H

′

∧ H′ ∈ H [[(with Γ do T1(C1)‖ . . .‖Tn(Cn)), (σ′c, θ)]] .

By definition, we know

Γ B (θ,H ′) .

Thus we get the conclusion. �

A.2 Linearizability Implies Contextual Refinement
To prove this direction, we show that for any clientW , if a concrete
execution using Π generates an observable behaviorB and a history
H , where H is linearizable w.r.t. a legal sequential history H ′,
then B can also be generated by an abstract execution of W using
Γ, accompanied with the history H ′. We construct the abstract
execution of W from the concrete execution and the linearizability
relation between H and H ′ as follows:

• For any client step in the concrete execution, we make the same
step in the abstract execution. This could be managed because
the effect of a client instruction depends only on the client state
in our language model (Section 3), and the client states are
always identical on the concrete and the abstract sides.

• If the client invokes a method of the object on the concrete side,
we let the abstract client invoke the method as well.

• For any concrete step inside a method (a step after the client
invocation but before the method returns), we let the abstract
side go zero step.

• If the concrete step is a return of a method which produces
a return event er in H , we locate er in H ′, and for every
unprocessed events before er in H ′, execute the corresponding
atomic method calls on the abstract side, following the order of
H ′ (until er is also produced by the abstract client). And then
return the current method at the abstract level.

To help locate the event er and ensure that the current abstract
code and state are consistent with the unprocessed history events,
we introduce two auxiliary observable events send(t, f, n) and
recv(t, n′) to produce at the invocation and return respectively.
Then we use the whole event trace to distinguish whether a method
call has been processed.

We first define two new semantics at the concrete and abstract
levels with send(t, f, n) and recv(t, n′) generated, and prove lin-
earizability implies the contextual refinement which uses these two
new semantics at the two levels (Lemma 19). Finally we prove this
new-semantics contextual refinement implies the normal-semantics
contextual refinement. This part is easy, since each execution of the
normal semantics can correspond to an execution of the new se-
mantics, and vice versa.

We show the new semantics in Figure 18. Here we overload the
notations for the normal semantics.

Then we define a relation R between the programs and states
of the two levels, which is determined by the linearizability rela-
tion between histories. It takes three parameters: the past concrete
event trace H1, the future concrete event trace H2 and the object
specification Γ.

Definition 15. (W,S)RH1,H2,Γ (W, S) iff
there exist H ′1, σc, σo, θ and K such that

1. (State relation) S = (σc, σo,K); S = (σc, θ, bKc);
2. (Code relation under H ′1) W = AΓ,K,H′

1
(W) where the func-

tion A is defined in Figure 19,

and H ′1 and θ satisfy the following: suppose we know the whole
history (from the beginning to the end of the execution) He, then
θ is the middle object of its linearization, and H ′1 replaces the first
half part inH1 by the linearization. Formally, there existsHe,He1,
H ′e, H ′e1 such that

1. (He1 is the prefix of He) get hist(H1 ::H2) = He;
get hist(H1) = He1;

2. (H ′e is a linearization of He) ∃Hc. Hc ∈ completions(He) ∧
Hc �lin H

′
e;

3. (H ′e1 is a linearization ofHe1) ∃Hc1. Hc1 ∈ completions(He1)
∧Hc1 �lin H

′
e1;

4. (θ is the middle object in H ′e) ∃H ′e2. H ′e = H ′e1 ::H ′e2 ∧ Γ I
(H ′e1, θ,H

′
e2);

5. (H ′1 is H1 with He1 replaced by H ′e1) H ′e1 = get hist(H ′1);
H ′1\H ′e1 = H1\He1; well formed(H ′1).

Here we define Γ I (H, θ′, H ′) to mean θ′ is the intermediate
abstract object state between H and H ′ where both H and H ′

satisfy Γ. That is, each pair of invocation and immediate response
events in H and H ′ is an allowed input-output pair following
the specification Γ, with the abstract object being continuously
changed from the initial one θ. We use Γ I (θ,H) as a shorthand
for Γ I (ε, θ,H).

17 2013/4/20

Π(f) = (y, C) JEKσc = n x ∈ dom(σc) κ = ({y n}, x,E[skip])

(E[x := f(E)], (σc, σo, ◦))
send(t,f,n)::(t,f,n)−−−−−−−−−−−−→ t,Π (C; noret, (σc, σo, κ))

κ = (σl, x, C) JEKσl]σo = n′ σ′c = σc{x n′}

(E[return E], (σc, σo, κ))
(t,ok,n′)::recv(t,n′)−−−−−−−−−−−−→ t,Π (C, (σ′c, σo, , ◦))

f ∈ dom(Γ) JEKσc = n x ∈ dom(σc) ak = (x,E[skip])

(E[x := f(E)], (σc, θ, ◦)) ◦
send(t,f,n)−−−−−−−→ t,Γ (fexec(f, n), (σc, θ, ak))

Γ(f)(n)(θ) = (n′, θ′)

(fexec(f, n), (σc, θ, ak)) ◦(t,f,n)::(t,ok,n′)−−−−−−−−−−−→ t,Γ (fret(n′), (σc, θ′, ak))

ak = (x,C) σ′c = σc{x n′}

(fret(n′), (σc, θ, ak)) ◦recv(t,n′)−−−−−−→ t,Γ (C, (σ′c, θ, ◦))

Figure 18. Selected Rules of the New Operational Semantics with send and recv Events Generated

AΓ,K,H(W) is defined inductively as follows:
AΓ,K,H(skip)

def
= skip

AΓ,K,H(let Π in C1‖ . . .‖Cn)
def
=

with Γ do AbKc(1),H|1 (C1)‖ . . .‖AbKc(n),H|n (Cn)

Aκ,H(C) is defined as follows:

Aκ,H(C)
def
=

 C if κ = ◦
fexec(f, n) if κ 6= ◦ and last(H) = send(t, f, n)
fret(n′) if κ 6= ◦ and last(H) = (t, ok, n′)

bKc is defined as follows:
bKc def

= {t bκc | K(t) = κ}

bκc def
=

{
◦ if κ = ◦
(x,C) if κ = (, x, C)

Figure 19. Code Abstraction

Γ I (H, θ′, H′)
def
= ∃θ. Γ I (θ,H, θ′, H′)

Γ I (θ,H′)

Γ I (θ, ε, θ,H′)

(n′, θ′) = Γ(f)(n)(θ) Γ I (θ′, H′, θ′′, H′′)

Γ I (θ, (t, f, n) :: (t, ok, n′) :: H′, θ′′, H′′)

We use Γ I (H ′e1, θ,H
′
e2) to split the legal sequential history

into two parts, H ′e1 has already been generated, H ′e2 needs to be
generated in the future execution, and the intermediate state θ is
used as the current abstract object state.

The following lemma says that, the histories generated in our
abstract semantics are legal sequential histories.

Lemma 16. ∀Γ, θ,H. Γ B (θ,H) =⇒ Γ I (θ,H).

We also require H ′1 to be well-formed, meaning that its observ-
able events and history events are in a proper order, so that the
event trace could be generated by an execution. For an event trace
H , well formed(H) iff, for every thread, each send event is fol-
lowed by a history invocation event, and then followed by a history
response event and a receive event. The formal definition is similar
to the well-formedness of a history, and omitted here. We could see
that the event traces generated by the new semantics for closed pro-
grams (executed from out-of-method states) are all well-formed.

The following lemma says, linearizability ensures that the initial
programs at the concrete and abstract sides are related by R.

Lemma 17. For any n, C1, . . . , Cn, S, S, σc, σo, K, θ, H and Γ,
if

1. S = (σc, σo,K); S = (σc, θ, bKc); ∀t. K(t) = ◦;
2. there exist He, Hc and H ′e such that get hist(H) = He;
Hc ∈ completions(He); Γ I (θ,H ′e); Hc �lin H

′
e,

then
(let Π in C1‖ . . .‖Cn,S)Rε,H,Γ (with Γ do C1‖ . . .‖Cn, S) .

Proof: Immediate by Definition 15. �

With the above definitions, we could formalize the following
lemma, which says that for any concrete execution where its history
is linearizable, and starting from any abstract program and state
which is related by R to an intermediate program and state in
the concrete execution, the abstract steps could generate the same
observable behaviors as the concrete remaining steps. The lemma
is proved by induction over the program steps.

Lemma 18. For any k, Π and Γ,W0, S0,W , S,H0,H , config, W
and S, if

1. (W0,S0)
H07−→∗ (W,S),

where ∃K. S0 = (, ,K) ∧ ∀t. K(t) = ◦;
2. (W,S)

H7−→k config;
3. (W,S)RH0,H,Γ (W, S),

then

∃config′, H ′. (W, S)
H′

�−→∗ config′

∧ get obsv(H ′) = get obsv(H) .

Proof: By induction over k.
Base Case:
• k = 0. Trivial.
• k = 1 and config = (skip,S). Trivial.
• k = 1 and config = abort.

H = (t, clt, abort). Thus the call stack is ◦. By the code
abstraction function in Figure 19, we know the abstract code

18 2013/4/20

is the same as the concrete code. Since the client states are
identical on the two sides, the abstract client can also go one
step to abort.
H = (t, obj, abort). It’s impossible because the history is
linearizable and cannot end with an abort event.

Inductive Step: k = n+ 1.

(W,S)
H17−→ (W ′,S ′) ∧ (W ′,S ′) H27−→n config

By the induction hypothesis, we only need to prove that

∃W′, S′, H′1. (W, S)
H′

1
�−→∗, (W′, S′)

∧ (W ′,S′)RH0::H1,H2,Γ (W′, S′) ∧ get obsv(H1) = get obsv(H′1)

Below we let H = H0 :: H1 :: H2, He = get hist(H), He0 =
get hist(H0), He1 = get hist(H1), He2 = get hist(H2), the
linearization of He is H ′e, the linearization of He0 is H ′e0, H ′e =
H ′e0 ::H ′e3, H ′e3 = H ′e1 ::H ′e2, the abstract objects between H ′e0,
H ′e1 and H ′e2 are θ and θ′, and the corresponding event trace of
H ′e0 is H ′0.

Proof sketch:

• If the first step of W is from x := f(E) to the method body
of the thread t, a send event send(t, f, n) and an invocation
event (t, f, n) are generated. Suppose the concrete code of t is
E[x := f(E)]. The initial call stack of the thread is κ = ◦. By
the code abstraction function in Figure 19, we know the abstract
code of t is E[x := f(E)]. We let it go one step. Then,

This abstract step does not abort. The same send event is
generated: H ′1 = send(t, f, n).
The resulting code on the abstract side is fexec(f, n). We
can prove that (W ′,S ′)RH0::H1,H2,Γ (W′, S′).

• If the first step of W is from (return E) to the client code and
the concrete call stack κ 6= ◦, a return event er = (t, ok, n′)
and a receive event recv(t, n′) are generated. By the concrete
operational semantics, we know the last event of H0|t must be
an invocation event ei = (t, f, n′). SinceH ′0\H ′e0 = H0\He0;
and well formed(H ′0), we know there are two cases only:

If last(H ′0|t) is a send event, we know last(H ′0|t) =
send(t, f, n′), then the abstract code of t is fexec(f, n′).
Thus er must be in H ′e3.
Suppose H ′e3 begins with e1

i , e
1
r, . . . , e

k
i , e

k
r (= er). Their

thread IDs are t1, . . . , tk(= t) respectively. Below we prove
that the abstract codes of these threads are all fexec.
− All of e1

i , . . . , e
k
i are in He0.

If eji is not in He0, then we know in He, eji is after er .
Since He is linearizable w.r.t. H ′e, we know in H ′e, e

j
i is

after er , which contradicts the fact that eji is before ekr
in H ′e3.

− None of e1
r, . . . , e

k
r are in He0.

This is because they are not in H ′e0, and He0 is lineariz-
able w.r.t. H ′e0.

− ∀j ∈ [1..k], its call stack is not ◦.
By the first point, we know the send events λ1

s, . . . , λ
k
s

which correspond to e1
i , . . . , e

k
i are in H0, thus are in

H ′0. By the second point, we know the receive events
λ1
r, . . . , λ

k
r which correspond to e1

r, . . . , e
k
r are not in

H0. Thus the call stacks of t1, . . . , tk are not ◦.
− ∀j ∈ [1..k]. last(H ′0|tj) = λjs.

We know λjs is in H ′0|tj and eji = last(H0|tj). If
last(H ′0|tj) 6= λjs, since get obsv(H ′0) = get obsv(H0),
we know the last event of H ′0|tj must be a history event.
Then we could get a contradiction.

We let the abstract client code be executed several steps as
follows: for the threads t1, . . . , tk, each executes one step
to fret in order, and then tk executes one step more to the
client code. Then,
− We have H ′1 = (e1

i :: e1
r :: . . . :: eki :: ekr :: recv(t, n′))

where ekr = er . This is because these events are at the
beginning of H ′e3, and Γ I (θ,H ′e3).

− We can prove that (W ′,S ′)RH0::H1,H2,Γ (W′, S′).
If last(H ′0|t) = e′r = (t, ok, n′1), then the abstract code of
t is fret(n′1). We let it go one step. Then,
− We can prove e′r = er . Since Hc0 �lin H

′
e0, we know

last(Hc0|t) = e′r , and e′r is not in He0. By the history
completion operation, we know ei must be in Hc0, thus
is also in H ′e0. Thus we know ei and e′r are the last
events inH ′e0|t. On the other hand, we have er is inHe|t
and just follows ei. Since He is linearizable w.r.t. H ′e,
we know er must be in H ′e|t and also follows ei. Since
H ′e0|t is a part of H ′e|t, we could conclude er = e′r , and
thus n′1 = n′.

− The abstract step generates a receive event recv(t, n′).
− We can prove that (W ′,S ′)RH0::H1,H2,Γ (W′, S′).

• If the first step of W1 is a normal step of a method (i.e., the call
stack is not ◦ and it is not returning), no event is generated. We
let the abstract code go zero step.
• If the first step of W1 is a normal step of the client (i.e., the

call stack is ◦ and it is not calling a method), no history event
is generated but a user event might be generated. Then we can
let the abstract code go the same step, since the client states are
the same on the two sides and the semantics of the statements
depend on only the client states.

From the induction hypothesis and the above argument that the first
steps can generate the same observable behavior, we could finish
the proof. �

Lemma 19. If Π �ϕ Γ, then Π vϕ Γ.

Proof: For any n, C1, . . . , Cn, σc, σo, θ and B,
if B ∈ O [[(let Π in C1 ‖ . . . ‖Cn), (σc, σo)]] and ϕ(σo) = θ, we
know there exist config, H and He such that

(let Π in C1‖ . . .‖Cn,S)
H7−→∗ config ,

S = init(σc, σo) , get hist(H) = He , get obsv(H) = B .
Thus He ∈ H [[(let Π in C1 ‖ . . .‖Cn), (σc, σo)]]. From Π �ϕ Γ,
we know

∃Hc, H ′e. Hc ∈ completions(He) ∧ Γ B (θ,H ′e) ∧Hc �lin H
′
e .

By Lemma 16, we know Γ I (θ,H ′e). From Lemma 17, we know

∃S. S = init(σc, θ)
∧ (let Π in C1‖ . . .‖Cn,S)Rε,H,Γ (with Γ do C1‖ . . .‖Cn, S) .

By Lemma 18, we know
B ∈ O [[(with Γ do C1‖ . . .‖Cn), (σc, θ)]]. �

19 2013/4/20

B. Inference Rules for Assertions and Actions
and More Discussions on Commit

B.1 Assertions
Properties on the separating conjunction still hold. We list the
inference rules in Separation Logic for separating conjunction be-
low.

p ∗ q⇔ q ∗ p
(p ∗ q) ∗ r⇔ p ∗ (q ∗ r)
p ∗ emp⇔ p

(p ∨ p′) ∗ q⇔ (p ∗ q) ∨ (p′ ∗ q)
(p ∧ p′) ∗ q⇒ (p ∗ q) ∧ (p′ ∗ q)

If Precise(q), then (p ∗ q) ∧ (p′ ∗ q) ⇒ (p ∧ p′) ∗ q .
p⇒ p′ q ⇒ q′

p ∗ q ⇒ p′ ∗ q′
(monotonicity)

Properties for the speculative conjunction.

(1) Commutativity.
p⊕ q ⇔ q ⊕ p

(2) Associativity.

(p⊕ q)⊕ r ⇔ p⊕ (q ⊕ r)

(3) Monotonicity.
p⇒ p′ q ⇒ q′

p⊕ q ⇒ p′ ⊕ q′

(4) Distributivity over ∨.

(p ∨ p′)⊕ q ⇔ (p⊕ q) ∨ (p′ ⊕ q)

(5) Semi-distributivity over ∧.

(p ∧ p′)⊕ q ⇒ (p⊕ q) ∧ (p′ ⊕ q)

(6) Semi-idempotence.

p⇒ p⊕ p
true⇔ true⊕ true

(7) ∧-like property.

p⇒ (q ⇒ (p⊕ q))
(p ∧ q)⇒ (p⊕ q)

false⇔ p⊕ false

(8) Semi-distributivity of ∨ over ⊕.

(p⊕ p′) ∨ q ⇒ (p ∨ q)⊕ (p′ ∨ q)

(9) Semi-distributivity of ∗ over ⊕.

(p⊕ p′) ∗ q ⇒ (p ∗ q)⊕ (p′ ∗ q)

(10) For assertions which are SpecExact and Exact,

If SpecExact(p), then p⊕ p⇒ p .

If Exact(q), then (p ∗ q)⊕ (p′ ∗ q) ⇒ (p⊕ p′) ∗ q .

Properties that do not hold and counterexamples.

(1) ∧-like or ∨-like properties.

p⊕ q⇒ p
p⇒ p⊕ q

(p⇒ r)⇒ ((q ⇒ r)⇒ ((p⊕ q)⇒ r))

(2) Reverse direction of sound properties.

p⊕ p ⇒ p

Counterexample: Let p = t � (γ, n) ∨ t � (end, n′). The
left side can be satisfied when ∆ = {({t (γ, n)}, ∅), ({t
(end, n′)}, ∅)}, but the right side cannot.

(p⊕ q) ∧ (p′ ⊕ q) ⇒ (p ∧ p′)⊕ q

Counterexample: Let p = t � (γ, n), p′ = t � (end, n′)
and q = t � (γ, n) ∨ t � (end, n′). Then the righthand
side is false. The left side can be satisfied when ∆ = {({t
(γ, n)}, ∅), ({t (end, n′)}, ∅)}. Another similar counterex-
ample is when q = t� (γ, n)⊕ t� (end, n′).

(p ∨ q)⊕ (p′ ∨ q) ⇒ (p⊕ p′) ∨ q

Counterexample: Let p = p′ = t � (γ, n) and q = t �
(end, n′). The left side can be satisfied when ∆ = {({t
(γ, n)}, ∅), ({t (end, n′)}, ∅)}, but the right side cannot.
(We have many counterexamples here.)

(p ∗ q)⊕ (p′ ∗ q) ⇒ (p⊕ p′) ∗ q

Counterexample: Let p = t1 � (γ1, n1), p′ = t1 �
(end, n′1) and q = t2 � (γ2, n2) ∨ t2 � (end, n′2). Then the
left side can be satisfied when ∆ = {({t1 (γ1, n1), t2
(γ2, n2)}, ∅), ({t1 (end, n′1), t2 (end, n′2)}, ∅)}, but the
right side cannot.

(p ∗ q)⊕ (p′ ∗ q)⇒ (p⊕ p′) ∗ (q ⊕ q)

Counterexample: Let p = t1 � (γ1, n1), p′ = t2 � (γ2, n2)
and q = t1 � (γ1, n1)∨ t2 � (γ2, n2). Then the left side can
be satisfied when ∆ = {({t1 (γ1, n1), t2 (γ2, n2)}, ∅)},
but the right side is false. Note that it is irrelevant to whether
q is precise or not. We can let q = t1 � (γ1, n1) ∗ t3 �
(γ3, n3) ∨ t2 � (γ2, n2) ∗ t3 � (end, n′3), which is precise,
but it is still a counterexample.

(3) Distributivity of ⊕ over ∗.

(p ∗ p′)⊕ q ⇒ (p⊕ q) ∗ (p′ ⊕ q)

Counterexample: Let p = t1 � (γ1, n1), p′ = t2 � (γ2, n2)
and q = t1 � (end, n′1) ∗ t2 � (end, n′2). Then the left
side can be satisfied when ∆ = {({t1 (γ1, n1), t2
(γ2, n2)}, ∅), ({t1 (end, n′1), t2 (end, n′2)}, ∅)}, but the
right side is false.

(p⊕ q) ∗ (p′ ⊕ q) ⇒ (p ∗ p′)⊕ q

Counterexample: Let p = t1 � (γ1, n1), p′ = t2 � (γ2, n2)
and q = t1 � (end, n′1) ∨ t2 � (end, n′2). Then the left
side can be satisfied when ∆ = {({t1 (γ1, n1), t2
(γ2, n2)}, ∅), ({t1 (γ1, n1), t2 (end, n′2)}, ∅), ({t1
(end, n′1), t2 (γ2, n2)}, ∅), ({t1 (end, n′1), t2
(end, n′2)}, ∅)}, but the right side cannot.

(4) Distributivity of ∧ over ⊕.

(p⊕ p′) ∧ q ⇒ (p ∧ q)⊕ (p′ ∧ q)

Counterexample: Let p = t� (γ, n), p′ = t� (end, n′) and
q = p⊕ p′.

(p ∧ q)⊕ (p′ ∧ q) ⇒ (p⊕ p′) ∧ q

Counterexample: Let p = p′ = q = t � (γ, n) ∨ t �
(end, n′). It does not hold because q ⊕ q ⇒ q does not hold.

20 2013/4/20

B.2 Actions
Properties for ∗ and ⊕.

(1) Commutativity.

R ∗R′⇔ R′ ∗R
R⊕R′⇔ R′ ⊕R

(2) Associativity.

(R1 ∗R2) ∗R3⇔ R1 ∗ (R2 ∗R3)
(R1 ⊕R2)⊕R3⇔ R1 ⊕ (R2 ⊕R3)

(3) Neutral element.
R ∗ Emp⇔ R

(4) Monotonicity.

R1 ⇒ R′1 R2 ⇒ R′2

R1 ∗R2 ⇒ R′1 ∗R′2
R1 ⇒ R′1 R2 ⇒ R′2

R1 ⊕R2 ⇒ R′1 ⊕R′2

(5) Exchange laws with n.

(p ∗ p′) n (q ∗ q′)⇔ (pn q) ∗ (p′ n q′)
(p⊕ p′) n (q ⊕ q′)⇔ (pn q)⊕ (p′ n q′)

(6) Idempotence.
R⇒ R⊕R

True⇔ True⊕ True

Properties for stability and fence.

(1) Compositionality of fence.

I . R I ′ . R′

I ∗ I ′ . R ∗R′

I . R I ′ . R′ Precise(I ⊕ I ′)
I ⊕ I ′ . R⊕R′

A counterexample for the following:

If Precise(p) and Precise(q) , then Precise(p⊕ q) .
Let p = (t1 � (γ1, n1)∗t2 � (γ2, n2))∨t1 � (end, n′1) and
q = (t1 � (end, n′1) ∗ t2 � (γ2, n2))∨ t1 � (γ1, n1). Then
p⊕q = ((t1 � (γ1, n1)∗t2 � (γ2, n2))⊕(t1 � (end, n′1)∗
t2 � (γ2, n2))) ∨ (t1 � (γ1, n1)⊕ t1 � (end, n′1)), which
is not precise.

(2) Compositionality of stability.

Sta(p,R) Sta(p′, R′) p⇒ I I . R

Sta(p ∗ p′, R ∗R′)

B.3 Properties for q - p
q - p is defined in Figure 9, and used in the COMMIT-SPEC-CONJ
rule. It has the following inference rules:

q1 - p q2 - p
(q1 ⊕ q2) - p

q1 - p q2 - p
(q1 ∨ q2) - p

q ⇒ q′ q′ - p
q - p

Note that if q1 - p and q2 - p hold, then (q1 ∗ q2) - p does not
necessarily hold.

B.4 Examples of COMMIT-SPEC-CONJ and MULTI-COMMIT
rules

Example B.1 We can prove the following:
{t1�(γ1,n1) ∗ t2�(γ2,n2)⊕ t1�(end,n′1) ∗ t2�(end,n′2)}
commit(t� (γ1, n1)⊕ t1 � (end, n′1))
{t1�(γ1,n1) ∗ t2�(γ2,n2)⊕ t1�(end,n′1) ∗ t2�(end,n′2)}

First, from the COMMIT rule and the FRAME rule, we know
{t1�(γ1,n1) ∗ t2�(γ2,n2)}
commit(t� (γ1, n1))
{t1�(γ1,n1) ∗ t2�(γ2,n2)}
{t1�(end,n′1) ∗ t2�(end,n′2)}
commit(t1 � (end, n′1))
{t1�(end,n′1) ∗ t2�(end,n′2)}

Then, by the COMMIT-SPEC-CONJ rule, we know
{t1�(γ1,n1) ∗ t2�(γ2,n2)⊕ t1�(end,n′1) ∗ t2�(end,n′2)}
commit(t� (γ1, n1))
{t1�(γ1,n1) ∗ t2�(γ2,n2)}
{t1�(γ1,n1) ∗ t2�(γ2,n2)⊕ t1�(end,n′1) ∗ t2�(end,n′2)}
commit(t1 � (end, n′1))
{t1�(end,n′1) ∗ t2�(end,n′2)}

Finally by the MULTI-COMMIT rule, we get the conclusion:
{t1�(γ1,n1) ∗ t2�(γ2,n2)⊕ t1�(end,n′1) ∗ t2�(end,n′2)}
commit(t� (γ1, n1)⊕ t1 � (end, n′1))
{t1�(γ1,n1) ∗ t2�(γ2,n2)⊕ t1�(end,n′1) ∗ t2�(end,n′2)}

Example B.2 Similarly, we can prove the following:
{t1�(γ1,n1) ∗ t2�(γ2,n2)⊕ t1�(end,n′1) ∗ t2�(γ2,n2)
⊕ t1�(end,n′1) ∗ t2�(end,n′2)}
commit(t� (γ1, n1)⊕ t1 � (end, n′1))
{t1�(γ1,n1) ∗ t2�(γ2,n2)⊕ t1�(end,n′1) ∗ t2�(γ2,n2)
⊕ t1�(end,n′1) ∗ t2�(end,n′2)}

Example B.3 Why does the MULTI-COMMIT rule need the side-
condition Exact({p1, p2})? We show the following example:

p
def
= (y = 0) ∗ (z = 0) ∗ (t�(γ,n))

p1
def
= (x = 0 ∨ y = 0) ∗ (t�(γ,n))

p2
def
= (x = 0 ∨ z = 0) ∗ (t�(γ,n))

We know SpecExact({p1, p2}), and by applying the COMMIT and
FRAME rules, we have

{p}commit(p1){p} , {p}commit(p2){p}

Since p1⊕p2 = ((x = 0)∗ (t�(γ,n))), we know it is satisfiable.
However, commit(p1 ⊕ p2) will abort if executed from a state
satisfying p.

C. Logic Soundness Proofs
In this section, we prove our logic is sound via the simulation in
Definition 7. We prove Lemmas 8 and 9 below, and get the final
soundness theorem (Theorem 10) directly from them.

C.1 Proofs of Lemma 8 (Simulation Implies Contextual
Refinement)

We define two auxiliary simulations:

1. A thread-local simulation between concrete and abstract client
code, including method calls (Definition 21 below). We will
show:

(a) it is implied by the simulation for method in Definition 7
when the two levels are method calls (the first rule in Fig-
ure 20);

(b) it trivially holds for client commands (the second and third
lines in Figure 20);

(c) it is also compositional (other rules in Figure 20) and could
ensure the following whole program simulation.

2. A whole-program simulation between concrete and abstract
levels (Definition 20 below). We will show it implies a sub-
set relation between observable behaviors of the two levels
(Lemma 35), thus could ensure contextual refinement.

21 2013/4/20

Then, Lemma 8 is proved as follows:

Proof: To show Π vϕ Γ, we want to prove: for any n,C1, . . . ,Cn,
σc, σo, and θ, if (σo, θ) ∈ ϕ (here we simply view ϕ as a relation),
then

O [[(let Π in C1‖ . . .‖Cn), (σc, σo)]]
⊆ O [[(with Γ do C1‖ . . .‖Cn), (σc, θ)]] .

By Lemma 35 (the whole-program simulation implies a behavior-
subset relation), we only need to prove:

(let Π in C1‖ . . .‖Cn) �ϕ (with Γ do C1‖ . . .‖Cn)

Also, since bϕc ⇒ pt, we know bϕc ⇒ bptcΓ.
since Rt =

∨
t′ 6=t Gt′ , we know bRtcΓ =

∨
t′ 6=tbGt′cΓ;

since I . {Rt, Gt}, we know bIcΓ . {bRtcΓ, bGtcΓ};
since pt ⇒ I , we know bptcΓ ⇒ bIcΓ;
since Sta(pt, Rt), we know Sta(bptcΓ, bRtcΓ).

Thus, we can apply the parallel compositionality of the simulation
for thread (Figure 20), then we only need to show: for any t,

(Ct,Π) �ibRtcΓ;bGtcΓ;bptcΓ (Ct,Γ)

It is proved by induction over the structure of Ct. For the base case,
we have the first to third lines in Figure 20; for the inductive step,
we have other compositionality rules in Figure 20. �

C.1.1 Definitions of Simulations for Thread and Program
We first define some notations in Figure 21. Most operations are
simply lifted from those defined for the simulation for method
(Sections 4 and 5).

Definition 20 (Simulation for Program). W �p̃ W iff

∀σc, σo, θ,K,K. (σo, θ) ∈ p̃ ∧ (∀t. K(t) = ◦) ∧ (∀t. K(t) = ◦)
=⇒ (W, (σc, σo,K)) � {(W, (σc, θ,K))} .

Whenever (W,S) � Ω, then

1. if (W,S)
e7−→ (W ′,S ′),

then there exist Ω′ and H such that Ω
H

⇒ Ω′,
get obsv(e) = H and (W ′,S ′) � Ω′;

2. if W = skip, then (skip,) ∈ Ω;

3. if (W,S)
e7−→ abort,

then there exist W, S and H such that (W, S) ∈ Ω,

(W, S)
H

�−→∗ abort and get obsv(e) = get obsv(H).

Definition 21 (Simulation for Thread). (C,Π) �t
R;G;P (C,Γ) iff

∀σc, σo,Λ. (σo,Λ) ∈ P
=⇒ (C, (σc, σo, ◦),Π) �t

R;G;P (Λ ∗ {({t C}, ∅)}, ◦,Γ)

Whenever (C, (σc, σo, κ),Π) �t
R;G;P (Λ, ak,Γ), then

1. (κ = (, x,))⇒ (ak = (x,)) and (κ = ◦)⇒ (ak = ◦);
2. if (C, (σc, σo, κ))

e−→ t,Π (C′, (σ′c, σ
′
o, κ
′)),

then there exist Λ′, ak′ and H such that

(Λ, σc, ak)
H

⇒ t,Γ (Λ′, σ′c, ak′), get obsv(e) = H ,
((σo,Λ), (σ′o,Λ

′)) ∈ G] True and
(C′, (σ′c, σ

′
o, κ
′),Π) �t

R;G;P (Λ′, ak′,Γ);
3. if (C, (σc, σo, κ))

e−→ t,Π abort,
then κ = ◦ and there exists H such that

(Λ, σc, ak)
H

⇒ t,Γ abort and get obsv(e) = H;
4. if C = skip,

then κ = ◦ and there exists Λ′ such that
Λ = Λ′ ∗ {({t skip}, ∅)} and (σo,Λ

′) ∈ P;
5. for any σ′c, σ′o and Λ′, if ((σo,Λ), (σ′o,Λ

′)) ∈ R] Id,
then (C, (σ′c, σ

′
o, κ),Π) �t

R;G;P (Λ′, ak,Γ).

Π(f) �t
R;G;p Γ(f) Π(f) = (x,) x 6∈ dom(I)

(y := f(E),Π) �t
bRcΓ;bGcΓ;bpcΓ

(y := f(E),Γ)

(c,Π) �t
bRcΓ;bGcΓ;bpcΓ

(c,Γ) (skip,Π) �t
R;G;P (skip,Γ)

(〈C〉,Π) �t
bRcΓ;bGcΓ;bpcΓ

(〈C〉,Γ)

(C1,Π) �t
R;G;P (C1,Γ) (C2,Π) �t

R;G;P (C2,Γ)

(C1;C1,Π) �t
R;G;P (C2;C2,Γ)

(C1,Π) �t
R;G;P (C1,Γ) (C2,Π) �t

R;G;P (C2,Γ)

(if (B) C1 else C2,Π) �t
R;G;P (if (B) C1 else C2,Γ)

(C,Π) �t
R;G;P (C,Γ)

(while (B){C},Π) �t
R;G;P (while (B){C},Γ)

(Ci,Π) �iRi;Gi;Pi (Ci,Γ) Ri =
∨
j 6=i Gj

I . {Ri,Gi} Pi ⇒ I bp̃c ⇒ Pi ∀i ∈ {1, . . . , n}
let Π in C1‖ . . .‖Cn �p̃ with Γ do C1‖ . . .‖Cn

Auxiliary definitions:

bΥcΓ
def
=

{
fexec(f, n) if Υ = (γ, n) and Γ(f) = γ
fret(n′) if Υ = (end, n′)

bUcΓ(t)
def
=

{
bΥcΓ if U(t) = Υ
undefined otherwise

b∆cΓ
def
=

{
∅ if ∆ = ∅
{(bUcΓ, θ)}] b∆′cΓ if ∆ = {(U, θ)}]∆′

(σ, b∆cΓ) ∈ bpcΓ iff (σ,∆) |= p

((σ, b∆cΓ), (σ′, b∆′cΓ)) ∈ bRcΓ iff ((σ,∆), (σ′,∆′)) |= R

fstep(R)
def
= ∃R,Γ. R = bRcΓ

x 6∈ dom(I)
def
= ∀σ,∆. ((σ,∆) |= I) =⇒ x 6∈ dom(σ)

Figure 20. Compositionality Rules for Simulation

We can prove the following lemma about⇒:

Lemma 22. If ∆⇒ ∆′, then (b∆cΓ, σc, ak)⇒ t,Γ (b∆′cΓ, σc, ak)
holds for any σc, ak and t.

C.1.2 Simulation for Thread is Lifted from Simulation for
Method, and is Compositional

We show the compositionality rules in Figure 20. Here we assume
there exists I such that at each rule, I . {R,G}, P ⇒ I, Sta(P,R)
and fstep({R,G}) hold. We prove their soundness in the following
Lemmas 23, 25, 26, 27, 28, 31, 32 and 33.

Lemma 23 (Sim for Thread is Lifted from Sim for Method).
If Π(f) �t

R;G;p Γ(f),
Π(f) = (x,C), x 6∈ dom(I), I . {R,G} and p⇒ I ,

then (y := f(E),Π) �t
bRcΓ;bGcΓ;bpcΓ (y := f(E),Γ).

Proof: Suppose Γ(f) = γ. The premise tells us:

∀n, σ,∆. (σ,∆) |= (t� (γ, n) ∗ (x = n) ∗ p)
=⇒ (C; noret, σ) �t

R;G;p ∆ .

We want to prove:

∀σc, σo,Λ. (σo,Λ) ∈ bpcΓ
=⇒ (y := f(E), (σc, σo, ◦),Π) �t

bRcΓ;bGcΓ;bpcΓ
(Λ ∗ {({t (y := f(E))}, ∅)}, ◦,Γ)

22 2013/4/20

Ω ::= {(W, S)}∗

p̃ ::= {(σo, θ)}∗

U ∈ ThrdID ⇀ AbsStmt

Λ ::= {(U, θ)}∗

P, I ::= {(σo,Λ)}∗

R,G ::= {((σo,Λ), (σ′o,Λ
′))}∗

Ω
H
⇒ Ω′ iff
∀W′, S′. (W′, S′) ∈ Ω′

=⇒ ∃W, S, H′. (W, S) ∈ Ω ∧ (W, S)
H′

�−→∗ (W′, S′)
∧ get obsv(H′) = H

U(t) = C (C, (σc, θ, κ))
H◦−→ t,Γ(C′, (σ′c, θ′, κ′))

(U, (σc, θ, ak))
H
99K t,Γ (U{t C′}, (σ′c, θ′, ak′))

t′ 6= t U(t′) = fexec(f, n) Γ(f)(n)(θ) = (n′, θ′)

(U, (σc, θ, ak)) 99K t,Γ (U{t′ fret(n′)}, (σc, θ′, ak))

(Λ, σc, ak)
H
⇒ t,Γ (Λ′, σ′c, ak′) iff

∀U′, θ′. (U′, θ′) ∈ Λ′

=⇒ ∃U, θ,H′. (U, θ) ∈ Λ

∧ (U, (σc, θ, ak))
H′
99K∗t,Γ (U′, (σ′c, θ′, ak′))

∧ get obsv(H′) = H

(Λ, σc, ak)
H
⇒ t,Γ abort iff

∃Λ′, σ′c, ak′, H′. (Λ, σc, ak)
H′

⇒ t,Γ (Λ′, σ′c, ak′)

∧ ∃U, θ,H′′. (U, θ) ∈ Λ′ ∧ (U(t), (σ′c, θ, ak′))
H′′
◦−→∗t,Γ abort

∧ get obsv(H′ ::H′′) = H

Λ ∗ Λ′
def
= {(U] U′, θ] θ′) | (U, θ) ∈ Λ ∧ (U′, θ′) ∈ Λ′}

P] P′ def
= {(σ] σ′,Λ ∗ Λ′) | (σ,Λ) ∈ P ∧ (σ′,Λ′) ∈ P′}

R] R′ def
= {(σ1] σ′1,Λ1 ∗ Λ′1), (σ2] σ′2,Λ2 ∗ Λ′2)

| ((σ1,Λ1), (σ2,Λ2)) ∈ R ∧ ((σ′1,Λ
′
1), (σ′2,Λ

′
2)) ∈ R′}

Figure 21. Auxiliary Definitions for Simulation

For any σc, σo and Λ, if (σo,Λ) ∈ bpcΓ, then there exists ∆ such
that (σo,∆) |= p and Λ = b∆cΓ. Thus for any n,

(σo] {x n},∆ ∗ {({t (γ, n)}, ∅)}) |=
(t� (γ, n) ∗ (x = n) ∗ p) .

From the premise, we know

(C; noret, σo] {x n}) �t
R;G;p ∆ ∗ {({t (γ, n)}, ∅)} .

Since

b∆ ∗ {({t (γ, n)}, ∅)}cΓ = Λ ∗ {({t fexec(f, n)}, ∅)}
from the following Lemma 24, we have

(C; noret, (σc, σo, κ),Π) �t
bRcΓ;bGcΓ;bpcΓ

(Λ ∗ {({t fexec(f, n)}, ∅)}, ak,Γ)

where κ = ({x n}, y, skip) and ak = (y, skip).
Then we can prove

(y := f(E), (σc, σo, ◦),Π) �t
bRcΓ;bGcΓ;bpcΓ

(Λ ∗ {({t (y := f(E))}, ∅)}, ◦,Γ)

by definition and operational semantics. �

Lemma 24. For any C, σo, σl, κ, x, y, ∆, ak, R, G and p, if

1. (C, σo] σl) �t
R;G;p ∆,

2. ∃C′. C = (C′; noret), and σl = {x },
3. there exists I such that I .{R,G}, (σo,∆) |= I∗true, p⇒ I ,
x 6∈ dom(I),

4. κ = (σl, y, skip) and ak = (y, skip),

then for any σc, (C, (σc, σo, κ),Π) �t
bRcΓ;bGcΓ;bpcΓ (b∆cΓ, ak,Γ).

Proof: By definition and co-induction. We have the following
cases:

1. If (C, (σc, σo, κ))
e−→ t,Π (C′, (σ′c, σ

′
o, ◦)),

by the operational semantics, we know C′ = skip, σ′o = σo,
C = E[return E], get obsv(e) = ε, and there exists n such
that JEKσo]σl = n and σ′c = σc{y n}.
From the first premise, we know

(σo] σl,∆) |= (t� (end, n) ∗ (x =) ∗ p).

Thus there exists ∆′ such that (σo,∆
′) |= p and

∆ = ∆′ ∗ {({t (end, n)}, ∅)} .

Thus

b∆cΓ = b∆′cΓ ∗ {({t fret(n)}, ∅)} .

By the abstract operational semantics, we know: for any θ,

(fret(n), (σc, θ, ak)) ◦−→ t,Γ(skip, (σ′c, θ, ◦))
Thus we have:

(b∆cΓ, σc, ak)⇒ t,Γ (b∆′cΓ ∗ {({t skip}, ∅)}, σ′c, ◦) .

Since (σo,∆
′) |= p and p ⇒ I , we know (σo,∆

′) |= I . Thus
(σo, b∆′cΓ) |= bIcΓ. Since I . G, we know

((σo, b∆cΓ), (σo, b∆′cΓ ∗ {({t skip}, ∅)}))
∈ bGcΓ] True.

Since (σo, b∆′cΓ) |= bpcΓ, by Lemma 26, we have

(skip, (σ′c, σo, ◦),Π) �t
bRcΓ;bGcΓ;bpcΓ

(b∆′cΓ ∗ {({t skip}, ∅)}, ◦,Γ).

2. If (C, (σc, σo, κ))
e−→ t,Π (C′, (σ′c, σ

′
o, κ
′)) and there exists σ′l

such that κ′ = (σ′l, y, skip),
by the operational semantics, we know σ′c = σc,

(C, σo] σl) −_ t (C′, σ′] σ′l),

dom(σl) = dom(σ′l) and get obsv(e) = ε.
From the first premise, we know there exists ∆′ such that

∆⇒ ∆′,
((σo] σl,∆), (σ′o] σ′l,∆′)) |= (G ∗ True),
(C′, σ′o] σ′l) �t

R;G;p ∆′.

By Lemma 22, we know

(b∆cΓ, σc, ak)⇒ t,Γ (b∆′cΓ, σc, ak).

Also we know

((σo] σl, b∆cΓ), (σ′o] σ′l, b∆′cΓ)) ∈ bGcΓ] True.

Since (σo,∆) |= I ∗ true, σl = {x }, x 6∈ dom(I) and
I . G, we know

((σo, b∆cΓ), (σ′o, b∆′cΓ)) ∈ bGcΓ] True.

Also we have (σ′o,∆
′) |= I ∗ true. Then from the hypothesis,

we have

(C′, (σc, σ
′
o, κ
′),Π) �t

bRcΓ;bGcΓ;bpcΓ (b∆′cΓ, ak,Γ).

23 2013/4/20

3. If (C, (σc, σo, κ))
e−→ t,Π abort,

by the operational semantics, we know

(C, σo] σl) −_ t abort,

which contradicts the first premise.
4. For any σ′c, σ′o and Λ′, if ((σo, b∆cΓ), (σ′o,Λ

′)) ∈ bRcΓ] Id,
we know there exists ∆′ such that Λ′ = b∆′cΓ. Thus

((σo] σl,∆), (σ′o] σl,∆′)) |= (R ∗ Id)

From the first premise, we know

(C, σ′o] σl) �t
R;G;p ∆′

Since I . R and x 6∈ dom(I), we know (σ′o,∆
′) |= I ∗ true.

From the hypothesis, we get

(C, (σ′c, σ
′
o, κ),Π) �t

bRcΓ;bGcΓ;bpcΓ (b∆′cΓ, ak,Γ).

By definition, we complete the proof. �

Lemma 25 (Simulation for Thread Holds on Instruction).
For any instruction c, if there exists I such that I . {R,G}, p⇒ I
and Sta(p,R), then (c,Π) �t

bRcΓ;bGcΓ;bpcΓ (c,Γ).

Proof: We want to prove: for any σo and Λ, if (σo,Λ) ∈ bpcΓ,
then for any σc,

(c, (σc, σo, ◦),Π) �t
bRcΓ;bGcΓ;bpcΓ

(Λ ∗ {({t c}, ∅)}, ◦,Γ)

We prove it by definition and co-induction. We have the following
cases:

1. If (c, (σc, σo, ◦))
e−→ t,Π (skip, (σ′c, σo, ◦)),

by the operational semantics, we know for any θ,

(c, (σc, θ, ◦))
e◦−→ t,Γ(skip, (σ′c, θ, ◦))

Thus we have

(Λ ∗ {({t c}, ∅)}, σc, ◦)
H

⇒ t,Γ

(Λ ∗ {({t skip}, ∅)}, σ′c, ◦)

where H = get obsv(e).
Also, since p⇒ I , we know (σo,Λ) ∈ bIcΓ. Thus

((σo,Λ), (σo,Λ)) ∈ b [I] cΓ ⊆ bGcΓ
Thus we have

((σo,Λ ∗ {({t c}, ∅)}), (σo,Λ ∗ {({t skip}, ∅)}))
∈ bGcΓ] True

Since (σo,Λ) ∈ bpcΓ, by Lemma 26, we have

(skip, (σ′c, σo, ◦),Π) �t
bRcΓ;bGcΓ;bpcΓ

(Λ ∗ {({t skip}, ∅)}, ◦,Γ).

2. If (c, (σc, σo, ◦))
e−→ t,Π abort,

by the operational semantics, we know for any θ,

(c, (σc, θ, ◦))
e◦−→ t,Γabort

Thus we have

(Λ ∗ {({t c}, ∅)}, σc, ◦)
H

⇒ t,Γ abort

where H = get obsv(e).
3. For any σ′c, σ′o and Λ′, if

((σo,Λ ∗ {({t c}, ∅)}), (σ′o,Λ′)) ∈ bRcΓ] Id,

since (σo,Λ) ∈ bIcΓ and I . R, we know there exists Λ′′ such
that

Λ′ = Λ′′ ∗ {({t c}, ∅)}) ,
((σo,Λ), (σ′o,Λ

′′)) ∈ bRcΓ .

Since Sta(p,R), we know

(σ′o,Λ
′′) ∈ bpcΓ .

From the hypothesis, we get

(c, (σ′c, σ
′
o, ◦),Π) �t

bRcΓ;bGcΓ;bpcΓ (Λ′, ◦,Γ) .

By definition, we complete the proof. �

Lemma 26 (Simulation for Thread Holds on Skip).
If there exists I such that I . R, P ⇒ I, Sta(P,R) and fstep(R),
then (skip,Π) �t

R;G;P (skip,Γ).

Proof: We want to prove: for any σo and Λ, if (σo,Λ) ∈ P, then
for any σc,

(skip, (σc, σo, ◦),Π) �t
R;G;P (Λ ∗ {({t skip}, ∅)}, ◦,Γ)

We prove it by definition and co-induction. We have the following
cases:

1. The skip case trivially holds.
2. For any σ′c, σ′o and Λ′, if

((σo,Λ ∗ {({t skip}, ∅)}), (σ′o,Λ′)) ∈ R] Id,

since fstep(R), (σo,Λ) ∈ I and I .R, we know there exists Λ′′

such that
Λ′ = Λ′′ ∗ {({t skip}, ∅)}) ,
((σo,Λ), (σ′o,Λ

′′)) ∈ R .

Since Sta(P,R), we know

(σ′o,Λ
′′) ∈ P .

From the hypothesis, we get

(skip, (σ′c, σ′o, ◦),Π) �t
R;G;P (Λ′, ◦,Γ) .

By definition, we complete the proof. �

Lemma 27 (Simulation for Thread Holds on Atomic Block).
For any client code C, if there exists I such that I .{R,G}, p⇒ I
and Sta(p,R), then (〈C〉,Π) �t

bRcΓ;bGcΓ;bpcΓ (〈C〉,Γ). 1

Proof: The proof is similar to the proof of Lemma 25. We can just
view 〈C〉 as a single-step instruction from clients. It does not access
object states. �

To prove sequential compositionality below, we first need to
define some useful notations:

Λ / {t C2}
def
=

{(U{t C1;C2}, θ) | (U, θ) ∈ Λ ∧ U(t) = C1}
(C.1)

outf(Λ, t)
def
=

∀U, θ. (U, θ) ∈ Λ =⇒
∃C. U(t) = C ∧ C 6= fexec(,) ∧ C 6= fret()

(C.2)

Lemma 28 (Sequential Compositionality of Simulation).
If (C1,Π) �t

R;G;P (C1,Γ) and (C2,Π) �t
R;G;P (C2,Γ),

then (C1;C1,Π) �t
R;G;P (C2;C2,Γ). 2

Proof: From the premise, we know: for any σc, σo and Λ, if
(σo,Λ) ∈ P, then

(C1, (σc, σo, ◦),Π) �t
R;G;P (Λ ∗ {({t C1}, ∅)}, ◦,Γ)

By the following Lemma 29, we know

1 Remember in our simple setting, 〈C〉 does not contain method calls or
nested atomic blocks. But it is not difficult to support them.
2 Here C1, C1, C2 and C2 are not inside method body (but they could be
method calls).

24 2013/4/20

(C1;C2, (σc, σo, ◦),Π) �t
R;G;P

(Λ ∗ {({t C1}, ∅)} / {t C2}, ◦,Γ)

where
Λ ∗ {({t C1}, ∅)} / {t C2}
= Λ ∗ {({t C1;C2}, ∅)}

Thus we get (C1;C1,Π) �t
R;G;P (C2;C2,Γ). �

Lemma 29. If

1. (C1, (σc, σo, ◦),Π) �t
R;G;P (Λ, ◦,Γ),

2. (C2,Π) �t
R;G;P (C2,Γ),

3. outf(Λ, t),

then (C1;C2, (σc, σo, ◦),Π) �t
R;G;P (Λ / {t C2}, ◦,Γ).

Proof: By definition and co-induction. We have the following
cases:

1. IfC1 = skip and (C1;C2, (σc, σo, ◦)) −→ t,Π (C2, (σc, σo, ◦)),
from the first premise, we know there exists Λ′ such that

Λ = Λ′ ∗ {({t skip}, ∅)} and (σo,Λ
′) ∈ P.

Thus

Λ / {t C2} = Λ′ ∗ {({t skip;C2}, ∅)}.
We have:

(Λ′ ∗ {({t skip;C2}, ∅)}, σc, ◦)⇒ t,Γ

(Λ′ ∗ {({t C2}, ∅)}, σc, ◦)
From the second premise, we know

(C2, (σc, σo, ◦),Π) �t
R;G;P (Λ′ ∗ {({t C2}, ∅)}, ◦,Γ).

Since I .G and P⇒ I, we know

((σo,Λ
′), (σo,Λ

′)) ∈ G ,

thus
((σo,Λ / {t C2}, (σo,Λ′ ∗ {({t C2}, ∅)}))
∈ G] True .

2. If (C1;C2, (σc, σo, ◦))
e−→ t,Π (C′1;C2, (σ

′
c, σ
′
o, ◦)),

thus (C1, (σc, σo, ◦))
e−→ t,Π (C′1, (σ

′
c, σ
′
o, ◦)).

From the first premise, we know there exist Λ′, ak′ and H such
that

(Λ, σc, ◦)
H

⇒ t,Γ (Λ′, σ′c, ak′) (C.3)

get obsv(e) = H (C.4)

((σo,Λ), (σ′o,Λ
′)) ∈ G] True (C.5)

(C′1, (σ
′
c, σ
′
o, ◦),Π) �t

R;G;P (Λ′, ak′,Γ) (C.6)

From (C.6), we know ak′ = ◦. Then from (C.3), we know
outf(Λ′, t).
From the hypothesis, we have

(C′1;C2, (σ
′
c, σ
′
o, ◦),Π) �t

R;G;P (Λ′ / {t C2}, ◦,Γ) .

Besides, since (C.5), outf(Λ, t), outf(Λ′, t) and fstep(G), we
know

((σo,Λ / {t C2}), (σ′o,Λ′ / {t C2})) ∈ G] True.

Finally, from (C.3), outf(Λ, t) and outf(Λ′, t), we can prove:

(Λ / {t C2}, σc, ◦)
H

⇒ t,Γ (Λ′ / {t C2}, σ′c, ◦) .

3. If (C1;C2, (σc, σo, ◦))
e−→ t,Π (C; noret, (σ′c, σ′o, κ′)) and

κ′ = (σl, x, (C
′
1;C2)),

thus (C1, (σc, σo, ◦))
e−→ t,Π (C; noret, (σ′c, σ′o, κ′1)) and

κ′1 = (σl, x, C
′
1).

From the first premise, we know there exist Λ′, ak′1 andH such
that

(Λ, σc, ◦)
H

⇒ t,Γ (Λ′, σ′c, ak′1) (C.7)

get obsv(e) = H (C.8)

((σo,Λ), (σ′o,Λ
′)) ∈ G] True (C.9)

(C; noret, (σ′c, σ
′
o, κ
′
1),Π) �t

R;G;P (Λ′, ak′1,Γ) (C.10)

Since (C.9), outf(Λ, t) and fstep(G), we know

((σo,Λ / {t C2}), (σ′o,Λ′)) ∈ G] True.

From (C.10), we know there exists C′1 such that ak′1 = (x,C′1).
Let

ak′ = (x, (C′1;C2)).

Then, from (C.7) and outf(Λ, t), we can prove:

(Λ / {t C2}, σc, ◦)
H

⇒ t,Γ (Λ′, σ′c, ak′) .

Finally, by the following Lemma 30, we know

(C; noret, (σ′c, σ′o, κ′),Π) �t
R;G;P (Λ′, ak′,Γ) .

4. If (C1;C2, (σc, σo, ◦))
e−→ t,Π abort,

by the operational semantics, we know

(C1, (σc, σo, ◦))
e−→ t,Π abort.

By the first premise, we know there exists H such that

(Λ, σc, ◦)
H

⇒ t,Γ abort (C.11)

get obsv(e) = H (C.12)
From (C.11) and outf(Λ, t), we can prove:

(Λ / {t C2}, σc, ◦)
H

⇒ t,Γ abort .

5. For any σ′c, σ′o and Λ′, if

((σo,Λ / {t C2}), (σ′o,Λ′)) ∈ R] Id,

since fstep(R) and outf(Λ, t), we know there exists Λ′′ such
that

Λ′ = Λ′′ / {t C2} , ((σo,Λ), (σ′o,Λ
′′)) ∈ R] Id .

By the first premise, we know

(C1, (σ
′
c, σ
′
o, ◦),Π) �t

R;G;P (Λ′′, ◦,Γ) .

Also we have outf(Λ′′, t). By the hypothesis, we know

(C1;C2, (σ
′
c, σ
′
o, ◦),Π) �t

R;G;P (Λ′′ / {t C2}, ◦,Γ).

By definition, we complete the proof. �

Lemma 30. If

1. (C, (σc, σo, κ),Π) �t
R;G;P (Λ, ak,Γ),

2. (C2,Π) �t
R;G;P (C2,Γ),

3. κ = (σl, x, C1), ak = (x,C1),
κ′ = (σl, x, (C1;C2)), ak′ = (x, (C1;C2)),

then (C, (σc, σo, κ
′),Π) �t

R;G;P (Λ, ak′,Γ).

Proof: By definition and co-induction. We have the following
cases:

1. If (C, (σc, σo, κ
′))

e−→ t,Π (C1;C2, (σ
′
c, σo, ◦)),

thus (C, (σc, σo, κ))
e−→ t,Π (C1, (σ

′
c, σo, ◦)).

25 2013/4/20

From the first premise, we know there exist Λ′, ak′′ andH such
that

(Λ, σc, ak)
H

⇒ t,Γ (Λ′, σ′c, ak′′) (C.13)

get obsv(e) = H (C.14)

((σo,Λ), (σo,Λ
′)) ∈ G] True (C.15)

(C1, (σ
′
c, σo, ◦),Π) �t

R;G;P (Λ′, ak′′,Γ) (C.16)
By (C.16), we know ak′′ = ◦. Then from (C.13), we know
outf(Λ′, t). We can prove:

(Λ, σc, ak′)
H

⇒ t,Γ (Λ′ / {t C2}, σ′c, ◦).

Besides, since (C.15) and fstep(G), we know

((σo,Λ), (σo,Λ
′ / {t C2})) ∈ G] True.

Finally, by Lemma 29, we know

(C1;C2, (σ
′
c, σo, ◦),Π) �t

R;G;P (Λ′ / {t C2}, ◦,Γ) .

2. If (C, (σc, σo, κ
′))

e−→ t,Π (C′, (σ′c, σ
′
o, κ
′′)) thus we know

there exists σ′l such that κ′′ = (σ′l, x, (C1;C2)),
thus (C, (σc, σo, κ))

e−→ t,Π (C′, (σ′c, σ
′
o, κ
′′′)) and

κ′′′ = (σ′l, x, C1).
From the first premise, we know there exist Λ′, ak′′′ andH such
that

(Λ, σc, ak)
H

⇒ t,Γ (Λ′, σ′c, ak′′′) (C.17)

get obsv(e) = H (C.18)

((σo,Λ), (σ′o,Λ
′)) ∈ G] True (C.19)

(C′, (σ′c, σ
′
o, κ
′′′),Π) �t

R;G;P (Λ′, ak′′′,Γ) (C.20)
By (C.20), we know there exists C′1 such that ak′′′ = (x,C′1).
Let ak′′ = (x, (C′1;C2)). By the hypothesis, we know

(C′, (σ′c, σ
′
o, κ
′′),Π) �t

R;G;P (Λ′, ak′′,Γ) .

Besides, from (C.17), we can prove

(Λ, σc, ak′)
H

⇒ t,Γ (Λ′, σ′c, ak′′) .

3. If (C, (σc, σo, κ
′))

e−→ t,Π abort,
by the operational semantics, we know

(C, (σc, σo, κ))
e−→ t,Π abort.

By the first premise, we know there exists H such that

(Λ, σc, ak)
H

⇒ t,Γ abort (C.21)

get obsv(e) = H (C.22)
We can prove:

(Λ, σc, ak′)
H

⇒ t,Γ abort .

4. For any σ′c, σ′o and Λ′, if

((σo,Λ), (σ′o,Λ
′)) ∈ R] Id,

By the first premise, we know

(C, (σ′c, σ
′
o, κ),Π) �t

R;G;P (Λ′, ak,Γ) .

By the hypothesis, we know

(C, (σ′c, σ
′
o, κ
′),Π) �t

R;G;P (Λ′, ak′,Γ).

By definition, we complete the proof. �

Lemma 31 (If-then-else Compositionality of Simulation).
If (C1,Π) �t

R;G;P (C1,Γ) and (C2,Π) �t
R;G;P (C2,Γ),

then (if (B) C1 else C2,Π) �t
R;G;P (if (B) C1 else C2,Γ).

Proof: We want to prove: for any σo and Λ, if (σo,Λ) ∈ P, then
for any σc,

(if (B) C1 else C2, (σc, σo, ◦),Π) �t
R;G;P

(Λ ∗ {({t (if (B) C1 else C2)}, ∅)}, ◦,Γ)

We prove it by definition and co-induction. We have the following
cases:

1. If (if (B) C1 else C2, (σc, σo, ◦)) −→ t,Π (C1, (σc, σo, ◦))
where JBKσc = true,
by the first premise, we know

(C1, (σc, σo, ◦),Π) �t
R;G;P (Λ ∗ {({t C1}, ∅)}, ◦,Γ) .

Also we have

(Λ ∗ {({t (if (B) C1 else C2)}, ∅)}, σc, ◦)⇒ t,Γ

(Λ ∗ {({t C1}, ∅)}, σc, ◦) .

Also, since P⇒ I, we know (σo,Λ) ∈ I. Since I .G, we have:

((σo,Λ), (σo,Λ)) ∈ G .

Thus we have
((σo,Λ ∗ {({t (if (B) C1 else C2)}, ∅)}),

(σo,Λ ∗ {({t C1}, ∅)})) ∈ G] True .

2. The case is similar when

(if (B) C1 else C2, (σc, σo, ◦)) −→ t,Π (C2, (σc, σo, ◦))

where JBKσc = false.
3. If (if (B) C1 else C2, (σc, σo, ◦))

e−→ t,Π abort,
by the operational semantics, we know JBKσc is undefined.
Thus we have

(Λ ∗ {({t if (B) C1 else C2}, ∅)}, σc, ◦)
H

⇒ t,Γ abort

where H = get obsv(e).
4. For any σ′c, σ′o and Λ′, if

((σo,Λ ∗ {({t if (B) C1 else C2}, ∅)}), (σ′o,Λ′))
∈ R] Id

since fstep(R), (σo,Λ) ∈ I and I .R, we know there exists Λ′′

such that
Λ′ = Λ′′ ∗ {({t if (B) C1 else C2}, ∅)}) ,
((σo,Λ), (σ′o,Λ

′′)) ∈ R .

Since Sta(P,R), we know

(σ′o,Λ
′′) ∈ P .

From the hypothesis, we get

(if (B) C1 else C2, (σ
′
c, σ
′
o, ◦),Π) �t

R;G;P
(Λ′′ ∗ {({t (if (B) C1 else C2)}, ∅)}, ◦,Γ) .

This case can also be proved by unfolding the premises and then
applying the new hypothesis, without using Sta(P,R).

By definition, we complete the proof. �

Lemma 32 (While-loop Compositionality of Simulation).
If (C,Π) �t

R;G;P (C,Γ),
then (while (B){C},Π) �t

R;G;P (while (B){C},Γ).

Proof: The proof is similar to the proof of Lemma 31, by applying
Lemmas 26 and 29. �

Lemma 33 (Parallel Compositionality of Simulation).
If for any i ∈ {1, . . . , n}, we have (Ci,Π) �iRi;Gi;Pi (Ci,Γ),
Ri =

∨
j 6=iGj , I . {Ri,Gi}, Pi ⇒ I, bp̃c ⇒ Pi,

then (let Π in C1‖ . . .‖Cn) �p̃ (with Γ do C1‖ . . .‖Cn).

26 2013/4/20

Proof: We want to prove: for any σc, σo, θ, K and K,
if (σo, θ) ∈ p̃, ∀t. K(t) = ◦ and ∀t. K(t) = ◦, then

(let Π in C1‖ . . .‖Cn, (σc, σo,K)) �
{(with Γ do C1‖ . . .‖Cn, (σc, θ,K))} .

For any i, since bp̃c ⇒ Pi, we know

(σo, {(∅, θ)}) ∈ Pi .

From the premise, we know

(Ci, (σc, σo, ◦),Π) �iRi;Gi;Pi ({(∅, θ)} ∗ {({i Ci}, ∅)}, ◦,Γ) ,

which is reduced to:

(Ci, (σc, σo, ◦),Π) �iRi;Gi;Pi ({({i Ci}, θ)}, ◦,Γ) .

On the other hand, since Pi ⇒ I, we know

(σo, {(∅, θ)}) ∈ I .

From the following Lemma 34, we know

(let Π in C1‖ . . .‖Cn, (σc, σo,K)) �
({(∅, θ)} ∗ (

⊗
i∈[1..n]{({i Ci}, ∅)}), σc,K)Γ .

Here we define

(Λ, σc,K)Γ
def
= {(with Γ do JUK, (σc, θ,K)) | (U, θ) ∈ Λ}

where JUK def
= U(1)‖ . . .‖U(n)

(C.23)
Thus

({(∅, θ)} ∗ (
⊗

i∈[1..n]{({i Ci}, ∅)}), σc,K)Γ

= ({({i Ci | i ∈ [1..n]}, θ)}, σc,K)Γ

= {(with Γ do C1‖ . . .‖Cn, (σc, θ,K))} .
Thus we get the conclusion. �

Lemma 34. If for any i ∈ {1, . . . , n}, we have

1. (Ci, (σc, σo] σi, κi),Π) �iRi;Gi;Pi (Λ ∗ Λi, aki,Γ),
2. (σo,Λ) ∈ I, dom(Λ ∗ (

⊗
i Λi).U) = [1..n],

3. Ri =
∨
j 6=iGj , I . {Ri,Gi},

4. K = {i κi | i ∈ [1..n]}, K = {i aki | i ∈ [1..n]},
then

(let Π in C1‖ . . .‖Cn, (σc, σo] (
⊎
i σi),K)) �

(Λ ∗ (
⊗

i Λi), σc,K)Γ ,

where (Λ, σc,K)Γ is defined in (C.23).

Proof: By definition and co-induction. Let

σ = σo] (
⊎
i σi) and Ω = (Λ ∗ (

⊗
i Λi), σc,K)Γ.

We have two cases:

1. If (let Π in C1 ‖ . . . ‖Cn, (σc, σ,K))
e7−→ (W ′,S ′), we have

the following cases:
(a) If C1 = . . . = Cn = skip,

then e = τ (we use τ to denote an empty (silent) event),
W ′ = skip and S ′ = (σc, σ,K).
From the premise, we know

∀i. κi = ◦, aki = ◦
and there exists Λ′ such that

Λ ∗ Λi = Λ′ ∗ {({i skip}, ∅)} .
Thus for any i, (Λ ∗ (

⊗
i Λi).U)(i) = skip. Thus for any

W, if (W,) ∈ Ω, then W = with Γ do skip‖ . . .‖skip.
Let Ω′ = {(skip, S) | (, S) ∈ Ω}. Thus Ω ⇒ Ω′ and
(W ′,S ′) � Ω′.

(b) If (Ci, (σc, σ, κi))
e−→ i,Π (C′i, (σ

′
c, σ
′′, κ′i)), by locality of

concrete code, we know one of the following holds:

i. If (Ci, (σc, σo] σi, κi))
e′−→ i,Π abort,

from the premise we know: κi = ◦.
Then by the concrete operational semantics, we know

(Ci, (σc, σ, ◦))
e′−→ i,Π abort, which leads to a contra-

diction.
ii. If (Ci, (σc, σo] σi, κi))

e−→ i,Π (C′i, (σ
′
c, σ
′, κ′i)),

thus σ′′ = σ′] (
⊎
j 6=i σj).

From the premise, we know there exist Λ′, ak′i and H
such that

(Λ ∗ Λi, σc, aki)
H

⇒ i,Γ (Λ′, σ′c, ak′i) (C.24)

get obsv(e) = H (C.25)

((σo] σi,Λ ∗ Λi), (σ
′,Λ′)) ∈ Gi] True (C.26)

(C′i, (σ
′
c, σ
′, κ′i),Π) �iRi;Gi;Pi (Λ′, ak′i,Γ) (C.27)

First, from (C.26) and I . {Ri,Gi}, we know
((σo] σi,Λ ∗ Λi), (σ

′,Λ′)) ∈ (I n I)] True
Since (σo,Λ) ∈ I, we know there exist unique σ′o and
Λ′′ such that

((σo,Λ), (σ′o,Λ
′′)) ∈ Gi , (σ′o,Λ

′′) ∈ I
and there exist σ′i and Λ′i such that

σ′ = σ′o] σ′i, Λ′ = Λ′′ ∗ Λ′i.
Thus (C.27) can be rewritten as:
(C′i, (σ

′
c, σ
′
o] σ′i, κ′i),Π) �iRi;Gi;Pi (Λ′′ ∗ Λ′i, ak′i,Γ)

On the other hand, for all j such that j 6= i,
since Rj =

∨
k 6=j Gk, we know Gi ⇒ Rj . Thus

((σo] σj ,Λ ∗ Λj), (σ
′
o] σj ,Λ′′ ∗ Λj)) ∈ Rj] Id

From the premise, we know
(Cj , (σ

′
c, σ
′
o] σj , κj),Π) �jRj ;Gj ;Pj (Λ′′ ∗ Λj , akj ,Γ)

Besides, from (C.24), we know
dom((Λ ∗ Λi).U) = dom((Λ′′ ∗ Λ′i).U)

Let K′ = K{i κ′i} and K′ = K{i ak′i}. Then by
the hypothesis, we know

(let Π in C1‖ . . . C′i . . .‖Cn, (σ′c, σ′′,K′)) �
(Λ′′ ∗ Λ′i ∗ (

⊗
j 6=i Λj), σ

′
c,K′)Γ

Let Ω′ = (Λ′′ ∗ Λ′i ∗ (
⊗

j 6=i Λj), σ
′
c,K′)Γ.

Secondly, we prove Ω
H

⇒ Ω′ by its definition.
For any W′ and S′ such that (W′, S′) ∈ Ω′, we know
there exist θ′ and U′ such that

W′ = with Γ do JU′K ,
S′ = (σ′c, θ

′,K′) ,
(U′, θ′) ∈ Λ′′ ∗ Λ′i ∗ (

⊗
j 6=i Λj) .

From (C.24), we know

∀U′′, θ′′. (U′′, θ′′) ∈ Λ′′ ∗ Λ′i
=⇒ ∃U, θ,H ′. (U, θ) ∈ Λ ∗ Λi

∧ (U, (σc, θ, aki))
H′
99K∗i,Γ (U′′, (σ′c, θ′′, ak′i))

∧ get obsv(H ′) = H
By locality of abstract operations, we know: there exist
U, θ and H ′ such that

(U, θ) ∈ Λ ∗ Λi ∗ (
⊗
j 6=i

Λj) (C.28)

(U, (σc, θ, aki))
H′
99K∗i,Γ (U′, (σ′c, θ′, ak′i)) (C.29)

get obsv(H ′) = H (C.30)
Let

W = with Γ do JUK , S = (σc, θ,K) .

27 2013/4/20

From (C.28) and definition (C.23), we know (W, S) ∈
Ω.
From (C.29), we can prove:

(with Γ do JUK, (σc, θ,K))
H′

�−→∗
(with Γ do JU′K, (σ′c, θ′,K{i ak′i}))

which is (W, S)
H′

�−→∗ (W′, S′). Thus Ω
H

⇒ Ω′.
So we finish this case.

2. If (let Π in C1‖ . . .‖Cn, (σc, σ,K))
e7−→ abort,

by the operational semantics, we know there exists i such that

(Ci, (σc, σ, κi))
e−→ i,Π abort

By locality of the concrete code, we know

(Ci, (σc, σo] σi, κi))
e−→ i,Π abort

From the premise, we know κi = ◦, aki = ◦ and there existsH

such that (Λ ∗ Λi, σc, aki)
H

⇒ i,Γ abort and get obsv(e) = H .
Thus by locality of abstract operations we know: there exist Λ′,
ak′i and H ′ such that

(Λ ∗ Λi ∗ (
⊗
j 6=i

Λj), σc, aki)
H′

⇒ i,Γ (Λ′ ∗ (
⊗
j 6=i

Λj), σ
′
c, ak′i)

(C.31)
and there exist U′, θ′ and H ′′ such that

(U′, θ′) ∈ Λ′ ∗ (
⊗
j 6=i

Λj) (C.32)

(U′(i), (σ′c, θ′, ak′i))
H′′
◦−→∗i,Γ abort (C.33)

get obsv(H ′ ::H ′′) = H (C.34)

From (C.31), we know there exist U, θ and H ′′′ such that

(U, θ) ∈ Λ ∗ Λi ∗ (
⊗
j 6=i

Λj) (C.35)

(U, (σc, θ, aki))
H′′′
99K∗i,Γ (U′, (σ′c, θ′, ak′i)) (C.36)

get obsv(H ′′′) = H ′ (C.37)

Let

W = with Γ do JUK , S = (σc, θ,K) .

From (C.35) and definition (C.23), we know (W, S) ∈ Ω.
From (C.33) and (C.36), we can prove:

(with Γ do JUK, (σc, θ,K)) �H
′′′::H′′
−−−−−−→∗ abort

which is (W, S) �H
′′′::H′′
−−−−−−→∗ abort.

From (C.34) and (C.37), we know get obsv(H ′′′ ::H ′′) = H .
So we finish this case.

By definition, we complete the proof. �

C.1.3 Simulation for Program Implies Refinement
Lemma 35 (Simulation for Program Implies Refinement).
For any W , W and p̃, if W �p̃ W, then

∀σc, σo, θ. (σo, θ) ∈ p̃
=⇒ O [[W, (σc, σo)]] ⊆ O [[W, (σc, θ)]] .

Proof: Immediate by applying the following Lemma 36. �

We overload the notation and define the following:

O [[W,S]]
def
= {get obsv(H) |
∃W ′,S′. ((W,S)

H7−→∗ (W ′,S′) ∨ (W,S)
H7−→∗ abort)}

O [[W, S]]
def
= {get obsv(H) |

∃W′, S′. ((W, S)
H
�−→∗ (W′, S′) ∨ (W, S)

H
�−→∗ abort)}

Lemma 36. If (W,S) � Ω, then there exist W and S such that
(W, S) ∈ Ω and O [[W,S]] ⊆ O [[W, S]].

Proof: For any H such that H ∈ O [[W,S]], we know one of the
following holds:

1. There exist W ′, S ′ and H ′ such that

(W,S)
H′
7−→∗ (W ′,S ′) , H = get obsv(H ′) .

By the following Lemma 37, we know there exists Ω′ such that

(W ′,S ′) � Ω′ , Ω
H

⇒ Ω′ .

Thus
∀W′, S′. (W′, S′) ∈ Ω′

=⇒ ∃W, S, H ′. (W, S) ∈ Ω ∧ (W, S)
H′

�−→∗ (W′, S′)
∧ get obsv(H ′) = H

Thus ∃W, S. (W, S) ∈ Ω ∧H ∈ O [[W, S]].
2. There exist W ′, S ′ and H ′ such that

(W,S)
H′
7−→∗ (W ′,S ′) , (W ′,S ′) e7−→ abort ,

and H = get obsv(H ′ ::e). Let H1 = get obsv(H ′).
By the following Lemma 37, we know there exists Ω′ such that

(W ′,S ′) � Ω′ , Ω
H1

⇒ Ω′ .

Also we know there exist W′, S′ and H ′′ such that

(W′, S′) ∈ Ω′ , (W′, S′)
H′′

�−→∗ abort ,
get obsv(e) = get obsv(H ′′)

And, there exist W, S and H ′′′ such that

(W, S) ∈ Ω , (W, S)
H′′′

�−→∗ (W′, S′) ,
get obsv(H ′′′) = H1

Thus we have:

(W, S) �H
′′′::H′′
−−−−−−→∗ abort , get obsv(H ′′′ :: H ′′) = H

Thus H ∈ O [[W, S]].

Thus we get the conclusion. �

Lemma 37. For any n,
if (W,S)

H7−→n (W ′,S ′), (W,S) � Ω, H ′ = get obsv(H),

then there exists Ω′ such that (W ′,S ′) � Ω′ and Ω
H′

⇒ Ω′.

Proof: By induction over n.
Base Case: n = 0. Thus W ′ = W , S ′ = S and H ′ = ε. We take
Ω′ = Ω.
Inductive Step: n = k + 1. Thus there exist W ′′, S ′′, H1 and e
such that

(W,S)
e7−→ (W ′′,S ′′) , (W ′′,S ′′) H17−→k (W ′,S ′) ,

and H = e ::H1. Let H ′1 = get obsv(H1).
By (W,S) � Ω, we know there exist Ω′′ and H ′′ such that

Ω
H′′

⇒ Ω′′, get obsv(e) = H ′′ and (W ′′,S ′′) � Ω′′.
By the induction hypothesis, we know there exists Ω′ such that

28 2013/4/20

(W ′,S ′) � Ω′ and Ω′′
H′

1

⇒ Ω′.

Thus we know Ω
H′

⇒ Ω′. �

C.2 Proofs of Lemma 9 (Logic Ensures Simulation for
Method)

Below we first define the standard rely-guarantee-style judgment
semantics. We derive the simulation for method (Definition 7)
from the standard judgment semantics, and then prove that all
the inference rules in Figure 11 are soundness w.r.t. this standard
semantics.

C.2.1 Derive Simulation from Semantics of Judgments

Definition 38 (Semantics of Sequential Judgment). |=t {p}C̃{q}
iff, for any Σ, if Σ |= p, the following are true:

1. for any Σ′, if (C̃,Σ) ↪−→∗t (skip,Σ′), then Σ′ |= q;
2. (C̃,Σ) 6↪−→∗t abort.

Definition 39 (Semantics of Rely-Guarantee-Style Judgment).
R,G, I |=t {p}C̃{q} iff, for any Σ, if Σ |= p, the following are
true (whereR = JR ∗ IdK and G = JG ∗ TrueK):

1. for any Σ′, if (C̃,Σ)
R
↪−→∗t (skip,Σ′), then Σ′ |= q;

2. for any n, (C̃,Σ,R) guarnt G.

Here JR K def
= {(Σ,Σ′) | (Σ,Σ′) |= R}.

The property (C̃,Σ,R) guarnt G is inductively defined as follows:

1. (C̃,Σ,R) guar0
t G always holds;

2. (C̃,Σ,R) guark+1
t G iff

(a) (C̃,Σ) 6↪−→ t abort;
(b) for any Σ′, if (Σ,Σ′)∈R, then (C̃,Σ′,R) guarkt G;
(c) for any C̃′ and Σ′, if (C̃,Σ) ↪−→ t (C̃′,Σ′),

then (Σ,Σ′) ∈ G and (C̃′,Σ′,R) guarkt G.

Our logic is sound w.r.t. this standard semantics, as shown in the
following theorem. We will prove this theorem in Appendix C.2.2.

Theorem 40 (Logic Soundness as Rely-Guarantee Reasoning).
If R,G, I `t {p}C̃{q}, then R,G, I |=t {p}C̃{q}.

Besides, as in LRG [8], we have the following property about I
and the syntactic judgment.

Lemma 41. If R,G, I `t {p}C̃{q}, then I . {R,G} and p∨ q ⇒
I ∗ true.

Proof: By induction over the derivation of the judgmentR,G, I `t

{p}C̃{q}. �

To prove Lemma 9, we first prove several lemmas which relate
the instrumented semantics to the concrete semantics and the spec-
ulative steps. The erasure function is formally defined in Figure 13.

Lemma 42 (From Concrete to Instrumented Steps).
For any C, σ, ∆, C′, σ′, t and C̃, if

1. (C, σ) −_ t (C′, σ′),
2. Er(C̃) = C, where C 6= E[return],
3. (C̃, (σ,∆)) 6↪−→ t abort,

then there exist C̃′ and ∆′ such that

1. (C̃, (σ,∆)) ↪−→ t (C̃′, (σ′,∆′)), and
2. Er(C̃′) = C′.

Proof: By case analysis of (C, σ) −_ t (C′, σ′).

1. C = E[skip]
From premise 1, we know C = (skip;C′) and σ′ = σ.
Since we assume instrumented commands are all inserted
into atomic blocks, we know there exists C̃′ such that C̃ =
(skip; C̃′) and Er(C̃′) = C′. Thus (C̃, (σ,∆)) ↪−→ t (C̃′, (σ,∆)).

2. C = E[c]
From premise 1, we know C′ = E[skip].
From premise 2, we know C̃′ = E′[c] where Er(E′) = E.
Let C̃′ = E′[skip] and ∆′ = ∆, thus the conclusion holds.

3. C = E[〈C1〉]
From premise 1 and the operational semantics, we know

(C1, σ) −_∗t (skip, σ′)

Since there are no nested atomic blocks, we get the conclusion
by the following Lemma 43.

4. C = E[if (B) C1 else C2]
From premise 1, we know σ′ = σ and

either C′ = E[C1] and JBKσ = true,
or C′ = E[C2] and JBKσ = false.

From premise 2, we know C̃′ = E′[if (B) C̃1 else C̃2] where
Er(C̃1) = C1, Er(C̃2) = C2 and Er(E′) = E. Thus we can
prove the conclusion holds.

5. C = E[while (B){C1}]
The case is similar to previous cases.

So we finish the proof. �

Lemma 43. For any n, if

1. (C, σ) −_n
t (skip, σ′),

2. Er(C̃) = C, where C does not have atomic blocks or returns,
3. (C̃, (σ,∆)) 6↪−→∗t abort,

then there exists ∆′ such that (C̃, (σ,∆)) ↪−→∗t (skip, (σ′,∆′)).

Proof: By induction over n.
Base Case: n = 0, thus C = skip and σ′ = σ. For C̃, we have the
following cases:

1. C̃ = skip. Trivial.
2. C̃ = linself. By the instrumented operational semantics.
3. C̃ is trylinself, or lin(E), or trylin(E) or commit(p). These

cases are all similar to the previous one.

Inductive Step: n = k + 1. Thus there exist C1 and σ1 such that

(C, σ) −_ t (C1, σ1) , and (C1, σ1) −_k
t (skip, σ′) .

By case analysis of (C, σ) −_ t (C1, σ1), which will be similar to
Lemma 42, we have: there exist C̃1 and ∆1 such that

(C̃, (σ,∆)) ↪−→ t (C̃1, (σ1,∆1)), and Er(C̃1) = C1.

By the induction hypothesis, we know there exists ∆′ such that

(C̃1, (σ1,∆1)) ↪−→∗t (skip, (σ′,∆′)).

Thus we get the conclusion. �

Lemma 44 (From Concrete to Instrumented Steps: Abort).
For any C, σ, ∆, t and C̃, if

1. (C, σ) −_ t abort,
2. Er(C̃) = C, where C 6= E[return],

then (C̃, (σ,∆)) ↪−→ t abort.

29 2013/4/20

Proof: By case analysis of (C, σ) −_ t abort. The proof is similar
to Lemma 42. �

Lemma 45 (From Instrumented to Speculative Steps).
For any C̃, σ, ∆, C̃′, σ′, ∆′ and t,
if (C̃, (σ,∆)) ↪−→ t (C̃′, (σ′,∆′)), then ∆⇒ ∆′.

Proof: By case analysis of (C̃, (σ,∆)) ↪−→ t (C̃′, (σ′,∆′)). The
proof is similar to Lemma 42.
For example, if C̃ = linself, we know ∆ →t ∆′, which we can
prove implies ∆⇒ ∆′. �

Lemma 46 (From Judgment Semantics to Simulation).
For any t, x, C, γ, R, G and p, if there exist I and C̃ such that

R,G, I |=t {t� (γ, x) ∗ p} C̃ {t� (end,) ∗ (x =) ∗ p} ,

and Er(C̃) = (C; noret), then (x,C) �t
R;G;p γ.

Proof: We want to prove: for any n, σ and ∆,
if (σ,∆) |= (t� (γ, n) ∗ (x = n) ∗ p), then

(C; noret, σ) �t
R;G;p ∆ .

We have (σ,∆) |= (t� (γ, x) ∗ p).
Then from the premise, we know the following are true (where
R = JR ∗ IdK and G = JG ∗ TrueK):

1. for any Σ′, if (C̃, (σ,∆))
R
↪−→∗t (skip,Σ′),

then Σ′ |= (t� (end,) ∗ (x =) ∗ p);
2. for any n, (C̃, (σ,∆),R) guarnt G.

Let C1 = (C; noret). Thus Er(C̃) = C1. We prove

(C1, σ) �t
R;G;p ∆

by its definition and co-induction. We have the following cases:

1. If C1 6= E[return], then
(a) for any C′ and σ′, if (C1, σ) −_ t (C′, σ′),

by Lemma 42, we know there exist C̃′ and ∆′ such that
(C̃, (σ,∆)) ↪−→ t (C̃′, (σ′,∆′)), and Er(C̃′) = C′.

Then by Lemma 45, we know
∆⇒ ∆′ .

From premise 2, we know
((σ,∆), (σ′,∆′)) ∈ G,

thus ((σ,∆), (σ′,∆′)) |= (G ∗ True) .
Finally, from the hypothesis, we know (C′, σ′) �t

R;G;p ∆′.
(b) From premise 2, we know

(C̃, (σ,∆)) 6↪−→ t abort .
By Lemma 44, we know (C1, σ) 6−_ t abort.

2. If C1 = E[return E],
then C̃ = E′[return E] where Er(E′) = E.
From premise 2, we know there exists n′ such that JEKσ = n′

and
∀U. (U,) ∈ ∆ ⇒ U(t) = (end, n′) (C.38)

Also we have

(C̃, (σ,∆)) ↪−→ t (skip, (σ,∆))

Then from premise 1, we know

(σ,∆) |= (t� (end,) ∗ (x =) ∗ p) .

Then from (C.38), we know

(σ,∆) |= (t� (end, n′) ∗ (x =) ∗ p) .

3. For any σ′ and ∆′, if ((σ,∆), (σ′,∆′)) |= (R ∗ Id),
then ((σ,∆), (σ′,∆′)) ∈ R.
By the hypothesis, we know (C1, σ

′) �t
R;G;p ∆′ .

Thus we get (C; noret, σ) �t
R;G;p ∆, and finish the proof. �

C.2.2 Soundness of Inference Rules
Theorem 40 (logic soundness w.r.t. the standard rely-guarantee-
style semantics) is proved by induction over the derivation of the
judgment R,G, I `t {p}C̃{q}. The whole proof consists of the
soundness proof for each individual rules. Here we show the main
lemmas used to prove the soundness of RET, FRAME, SPEC-CONJ,
COMMIT, LINSELF, LINSELF-END, TRY and TRY-END.

The RET rule.

Lemma 47 (Ret-Sound).
|=t {t� (end, E)}E[return E]{t� (end, E)}.

Proof: For any σ and ∆ such that (σ,∆) |= (t� (end, E)),
we know there exists n such that

{{E}}σ = n, and ∆ = {({t (end, n)}, ∅)} .

Thus we know JEKσ = n and

∀U. (U,) ∈ ∆ ⇒ U(t) = (end, n).

Then

(E[return E], (σ,∆)) ↪−→ t (skip, (σ,∆)) .

By Definition 38, we get the conclusion. �

The LINSELF rule. We first prove the following useful lemma:

Lemma 48. For any ∆1, ∆′1, ∆2, ∆′2, t, γ, n and n′, if

1. (∆2, n)
γ−→ (∆′2, n

′),
2. ∆1 = {({t (γ, n)}, ∅)}, ∆′1 = {({t (end, n′)}, ∅)},

then (∆1 ∗∆2)→t (∆′1 ∗∆′2).

Lemma 49 (Linself-Sound). If [E1, p]γ[E2, q],
then |=t {t� (γ,E1) ∗ p}linself{t� (end, E2) ∗ q}.

Proof: For any σ and ∆ such that (σ,∆) |= (t� (γ,E1) ∗ p),
we know there exist n, σ1, σ2, ∆1 and ∆2 such that

{{E1}}σ1 = n, ∆1 = {({t (γ, n)}, ∅)},
(σ2,∆2) |= p, σ = σ1] σ2 and ∆ = ∆1 ∗∆2 .

From [E1, p]γ[E2, q], we know: there exist σ′1, σ′2, ∆′2 and n′ such
that

{{E2}}σ′
1

= n′, (∆2, n)
γ−→ (∆′2, n

′),
(σ′2,∆

′
2) |= q and σ1] σ2 = σ′1] σ′2 .

By Lemma 48, we know

∆→t (∆′1 ∗∆′2), where ∆′1 = {({t (end, n′)}, ∅)} .

Thus

(linself, (σ,∆)) ↪−→ t (skip, (σ,∆′1 ∗∆′2)) ,

where

(σ,∆′1 ∗∆′2) |= (t� (end, E2) ∗ q) .

By Definition 38, we get the conclusion. �

The LINSELF-END rule.

Lemma 50 (Linself-End-Sound).
|=t {t� (end, E)}linself{t� (end, E)} .

Proof: For any σ and ∆ such that (σ,∆) |= (t� (end, E)),
we know there exists n such that

{{E}}σ = n, and ∆ = {({t (end, n)}, ∅)} .

Thus ∆→t ∆. Then

30 2013/4/20

(linself, (σ,∆)) ↪−→ t (skip, (σ,∆)) .

By Definition 38, we get the conclusion. �

The TRY rule.

Lemma 51 (Try-Sound). If [E1, p]γ[E2, q],
then |=t {E � (γ,E1)∗p}trylin(E){(E � (γ,E1)∗p)⊕(E �
(end, E2) ∗ q)}.

Proof: For any σ and ∆ such that (σ,∆) |= (E � (γ,E1) ∗ p),
we know there exist t′, n, σ11, σ12, σ2, ∆1 and ∆2 such that

{{E}}σ11 = t′, {{E1}}σ12 = n, ∆1 = {({t′ (γ, n)}, ∅)},
(σ2,∆2) |= p, σ = σ11] σ12] σ2 and ∆ = ∆1 ∗∆2 .

From [E1, p]γ[E2, q], we know: there exist σ′12, σ′2, ∆′2 and n′ such
that

{{E2}}σ′
12

= n′, (∆2, n)
γ−→ (∆′2, n

′),
(σ′2,∆

′
2) |= q and σ12] σ2 = σ′12] σ′2 .

By Lemma 48, we know

∆→t′ (∆′1 ∗∆′2), where ∆′1 = {({t′ (end, n′)}, ∅)} .

Thus

(trylin(E), (σ,∆)) ↪−→ t (skip, (σ, (∆′1 ∗∆′2) ∪∆)) ,

where

(σ,∆′1 ∗∆′2) |= (E � (end, E2) ∗ q) ,

thus

(σ, (∆′1∗∆′2)∪∆) |= (E � (γ,E1)∗p)⊕(E � (end, E2)∗q) .

By Definition 38, we get the conclusion. �

The TRY-END rule.

Lemma 52 (Try-End-Sound).
|=t {E � (end, E′)}trylin(E){E � (end, E′)} .

Proof: For any σ and ∆ such that (σ,∆) |= (E � (end, E′)),
we know there exist σ1, σ2, t′ and n such that

{{E}}σ1 = t′, {{E}}σ2 = n,
σ = σ1] σ2 and ∆ = {({t′ (end, n)}, ∅)} .

Thus ∆→t′ ∆. Then

(trylin(E), (σ,∆)) ↪−→ t (skip, (σ,∆)) .

By Definition 38, we get the conclusion. �

The COMMIT rule. First we prove some properties on (σ,∆)|p =
(σ′,∆′). We use δ as a shorthand for (U, θ).

Lemma 53. 1. If ∆|D = ∆′, then for any δ ∈ ∆, there exist δ′

and δ′′ such that δ = δ′] δ′′ and δ′ ∈ ∆′.
2. If ∆|dom(∆′) ∩∆′ = ∅, then for any δ ∈ ∆, there does not exist
δ′ or δ′′ such that δ = δ′] δ′′ and δ′ ∈ ∆′.

Proof: 1. Since ∆|D = ∆′ 6= ∅, we know

∆|D = {δ′ | dom(δ′) = D ∧ ∃δ′′. δ′] δ′′ ∈ ∆} 6= ∅

Thus there exist δ0, δ′0 and δ′′0 such that δ0 = δ′0] δ′′0 ∈ ∆ and
dom(δ′0) = D. Then we know

D ⊆ dom(∆)

Thus for any δ ∈ ∆, there exist δ′ and δ′′ such that

δ = δ′] δ′′ , dom(δ′) = D

Thus δ′ ∈ ∆|D , and hence δ′ ∈ ∆′.

2. Since ∆|dom(∆′) ∩∆′ = ∅, we immediately know

¬(∃δ′, δ′′. (δ′] δ′′ ∈ ∆) ∧ (δ′ ∈ ∆′))

Thus we get the conclusion.
�

From Lemma 53, we know:

If ∆1|dom(∆) = ∆ and ∆2|dom(∆) ∩∆ = ∅,
then ∆1 ∩∆2 = ∅.

Below we prove that (σ,∆)|p = (,∆′) is deterministic when
SpecExact(p).

Lemma 54. If SpecExact(p), and both (σ,∆)|p = (σ′1,∆
′
1) and

(σ,∆)|p = (σ′2,∆
′
2) hold, then ∆′1 = ∆′2.

Proof: We know there exist ∆p, σ′′1 , σ′′2 , ∆′′1 and ∆′′2 such that

(σ = σ′1] σ′′1) ∧ (∆ = ∆′1]∆′′1) ∧ ((σ′1,∆p) |= p)
∧ (∆′1|dom(∆p) = ∆p) ∧ (∆′′1 |dom(∆p) ∩∆p = ∅) ,
(σ = σ′2] σ′′2) ∧ (∆ = ∆′2]∆′′2) ∧ ((σ′2,∆p) |= p)
∧ (∆′2|dom(∆p) = ∆p) ∧ (∆′′2 |dom(∆p) ∩∆p = ∅) .

Since ∆′1|dom(∆p) = ∆p and ∆′′2 |dom(∆p)∩∆p = ∅, by Lemma 53,
we know ∆′1 ∩∆′′2 = ∅. Similarly we know ∆′′1 ∩∆′2 = ∅. Since
∆′1]∆′′1 = ∆′2]∆′′2 , we know ∆′1 = ∆′2. �

Lemma 55 (Commit-Sound). If SpecExact(p) and p′ ⇒ p, then
|=t {p′ ⊕ true}commit(p){p′} .

Proof: For any σ and ∆ such that (σ,∆) |= p′ ⊕ true, we know
there exist ∆′ and ∆′′ such that

(σ,∆′) |= p′ , ∆ = ∆′]∆′′ .

Thus (σ,∆′) |= p. We know ∆′|dom(∆′) = ∆′ and ∆′′|dom(∆′) =
∆′′. Then ∆′′|dom(∆′) ∩∆′ = ∅. Thus

(σ,∆)|p = (σ,∆′) .

Thus by the operational semantics, we know

(commit(p), (σ,∆)) 6↪−→ t abort .

On the other hand, for any ∆1 such that
(commit(p), (σ,∆)) ↪−→ t (skip, (σ,∆1)), we know (σ,∆)|p =
(,∆1). By Lemma 54, we know ∆1 = ∆′. Thus (σ,∆1) |= p′

and we are done. �

Lemma 56 (Commit-Spec-Conj-Sound). If |=t {p1}commit(p){q}
and p2 - p, then |=t {p1 ⊕ p2}commit(p){q} .

Proof: For any σ and ∆ such that (σ,∆) |= p1 ⊕ p2, we know
there exist ∆1 and ∆2 such that

(σ,∆1) |= p1 , (σ,∆2) |= p2 , ∆ = ∆1 ∪∆2 .

From |=t {p1}commit(p){q}, we know

(1) for any ∆′1, if (commit(p), (σ,∆1)) ↪−→∗t (skip, (σ,∆′1)),
then (σ,∆′1) |= q;

(2) (commit(p), (σ,∆1)) 6↪−→∗t abort.

From (2), we know SpecExact(p) and there exist σ′ and ∆′1 such
that (σ,∆1)|p = (σ′,∆′1). Thus there exist σ′′, ∆′′1 and ∆p such
that

σ = σ′] σ′′ , ∆1 = ∆′1]∆′′1 , (σ′,∆p) |= p ,
∆′1|dom(∆p) = ∆p , ∆′′1 |dom(∆p) ∩∆p = ∅ .

Since (σ,∆2) |= p2 and p2 - p, we know

∆2|dom(∆p) ∩∆p = ∅ .

31 2013/4/20

Thus (∆′′1 ∪∆2)|dom(∆p) ∩∆p = ∅. Then by Lemma 53, we know
∆′1 ∩ (∆′′1 ∪∆2) = ∅. Thus we have

∆ = ∆′1] (∆′′1 ∪∆2) , ∆′1|dom(∆p) = ∆p ,
(∆′′1 ∪∆2)|dom(∆p) ∩∆p = ∅ .

Thus (σ,∆)|p = (σ′,∆′1) holds. Then, by the operational seman-
tics, we know

(commit(p), (σ,∆)) 6↪−→ t abort .

On the other hand, for any ∆′ such that
(commit(p), (σ,∆)) ↪−→ t (skip, (σ,∆′)), we know (σ,∆)|p =
(,∆′). By Lemma 54, we know ∆′1 = ∆′. Since (σ,∆1)|p =
(σ′,∆′1), we know (commit(p), (σ,∆1)) ↪−→ t (skip, (σ,∆′1)).
From (1), we know (σ,∆′1) |= q and we are done. �

Lemma 57 (Multi-Commit-Sound). If |=t {p}commit(p1){q1},
|=t {p}commit(p2){q2}, Exact(p1), Exact(p2) and p1 ⊕ p2 is
satisfiable, then |=t {p}commit(p1 ⊕ p2){q1 ⊕ q2} .

Proof: For any σ and ∆ such that (σ,∆) |= p, from the premises,
we know

(1) for any ∆′1, if (commit(p1), (σ,∆)) ↪−→∗t (skip, (σ,∆′1)),
then (σ,∆′1) |= q1;

(2) (commit(p1), (σ,∆)) 6↪−→∗t abort;
(3) for any ∆′2, if (commit(p2), (σ,∆)) ↪−→∗t (skip, (σ,∆′2)),

then (σ,∆′2) |= q1;
(4) (commit(p2), (σ,∆)) 6↪−→∗t abort.

Since Exact(p1) and Exact(p2), we know Exact(p1 ⊕ p2), thus
SpecExact(p1 ⊕ p2). From (2) and (4), we know there exist σ′1,
∆′1, σ′2 and ∆′2 such that (σ,∆)|p1 = (σ′1,∆

′
1) and (σ,∆)|p2 =

(σ′2,∆
′
2). Thus there exist σ′′1 , ∆′′1 , ∆p1, σ′′2 , ∆′′2 and ∆p2 such that

σ = σ′1] σ′′1 , ∆ = ∆′1]∆′′1 , (σ′1,∆p1) |= p1 ,
∆′1|dom(∆p1) = ∆p1 , ∆′′1 |dom(∆p1) ∩∆p1 = ∅ ;
σ = σ′2] σ′′2 , ∆ = ∆′2]∆′′2 , (σ′2,∆p2) |= p2 ,
∆′2|dom(∆p2) = ∆p2 , ∆′′2 |dom(∆p2) ∩∆p2 = ∅ .

Since p1 ⊕ p2 is satisfiable, we know there exist σ′ and ∆p such
that (σ′,∆p) |= p1 ⊕ p2. Since Exact(p1) and Exact(p2), we
know σ′ = σ′1 = σ′2 and ∆p = ∆p1 ∪ ∆p2. Thus dom(∆p) =
dom(∆p1) = dom(∆p2).

Below we prove (σ,∆)|p1⊕p2 = (σ′,∆′1 ∪ ∆′2). We know
σ = σ′]σ′′1 , and there exists ∆′′ such that ∆ = (∆′1 ∪∆′2)]∆′′.
Thus ∆′′ ⊆ ∆′′1 and ∆′′ ⊆ ∆′′2 . Then

(∆′1 ∪∆′2)|dom(∆p) = ∆′1|dom(∆p) ∪∆′2|dom(∆p)

= ∆p1 ∪∆p2 = ∆p ,
∆′′|dom(∆p) ∩∆p

= (∆′′|dom(∆p) ∩∆p1) ∪ (∆′′|dom(∆p) ∩∆p2)
⊆ (∆′′1 |dom(∆p1) ∩∆p1) ∪ (∆′′2 |dom(∆p2) ∩∆p2) = ∅

Thus we get (σ,∆)|p1⊕p2 = (σ′,∆′1 ∪ ∆′2). By the operational
semantics, we know

(commit(p), (σ,∆)) 6↪−→ t abort .

On the other hand, for any ∆′ such that
(commit(p), (σ,∆)) ↪−→ t (skip, (σ,∆′)), we know (σ,∆)|p =
(,∆′). By Lemma 54, we know ∆′1∪∆′2 = ∆′. From (1) and (3),
we know (σ,∆′1) |= q1 and (σ,∆′2) |= q2. Thus (σ,∆′) |= q1⊕q2
and we are done. �

The FRAME rule and locality.

Definition 58 (Locality). If (C̃,Σ1) 6↪−→ ∗t abort, then for all Σ2

and Σ = Σ1 ∗ Σ2,

1. (Safety property) (C̃,Σ) 6↪−→∗t abort;

2. (Frame property) for all C̃′ and Σ′, if (C̃,Σ) ↪−→ ∗t (C̃′,Σ′),
then there exists Σ′1 such that
Σ′ = Σ′1 ∗ Σ2 and (C̃,Σ1) ↪−→∗t (C̃′,Σ′1).

We prove the frame property of commit(p) below:

Lemma 59. If

1. (commit(p), (σ,∆)) ↪−→ t (skip, (σ,∆′)),
2. σ = σ1] σ2, ∆ = ∆1 ∗∆2,
3. (commit(p), (σ1,∆1)) 6↪−→ t abort,

then there exists ∆′1 such that

1. ∆′ = ∆′1 ∗∆2, and
2. (commit(p), (σ1,∆1)) ↪−→ t (skip, (σ1,∆

′
1)).

Proof: From premise 1, we know SpecExact(p) and there exist
σp,∆p and D such that (σp,∆p) |= p and dom(∆p) = D, and
there exists ∆′′ such that

∆ = ∆′]∆′′ , σp ⊆ σ , ∆′|D = ∆p , ∆′′|D ∩∆p = ∅

From premise 3 and SpecExact(p), we know there exist σ′p, ∆′1
and ∆′′1 such that (σ′p,∆p) |= p and

∆1 = ∆′1]∆′′1 , σ
′
p ⊆ σ1 , ∆′1|D = ∆p , ∆′′1 |D ∩∆p = ∅

Below we prove ∆′ = ∆′1 ∗∆2.

1. We prove ∆′1]∆2.
Since ∆1]∆2, and ∆′1 ⊆ ∆1, we know ∆′1]∆2.

2. We prove ∆′1 ∗∆2 ⊆ ∆′.
For any δ such that δ ∈ ∆′1 ∗ ∆2, we know there exist δ′1 and
δ2 such that

δ′1 ∈ ∆′1 , δ2 ∈ ∆2 , δ = δ′1] δ2

From δ′1 ∈ ∆′1 and ∆′1|D = ∆p, by the above Lemma 53, we
know there exist δp and δ′ such that

δ′1 = δp] δ′ , δp ∈ ∆p

Thus we know

δ = δp] (δ′] δ2)

Since ∆′′|dom(∆p)∩∆p = ∅, by the above Lemma 53, we know
δ 6∈ ∆′′. Since δ ∈ ∆′1∗∆2 ⊆ ∆1∗∆2 = ∆, we know δ ∈ ∆′.

3. We prove ∆′ ⊆ ∆′1 ∗∆2.
For any δ such that δ ∈ ∆′, by the above Lemma 53, we know
there exist δp and δ′ such that

δ = δp] δ′ , δp ∈ ∆p

Since ∆′1|D = ∆p, by the above Lemma 53, we know
dom(∆p) ⊆ dom(∆′1). Since ∆′1]∆2, we know ∆p]∆2. Thus
dom(δp) ∩ dom(∆2) = ∅. Since dom(∆2) ⊆ dom(δ) =
dom(δp)]dom(δ′), we know dom(∆2) ⊆ dom(δ′). Thus there
exist δ′1 and δ′2 such that

δ′ = δ′1] δ′2 , dom(δ′2) = dom(∆2)

On the other hand, since δ ∈ ∆′ ⊆ ∆ = ∆1 ∗ ∆2, we know
there exist δ1 and δ2 such that

δ = δ1] δ2 , δ1 ∈ ∆1 , δ2 ∈ ∆2 , dom(δ2) = dom(∆2)

Since δ = δp] δ′1] δ′2 = δ1] δ2 and dom(δ′2) = dom(δ2), we
know δ′2 = δ2 and δp] δ′1 = δ1. Since ∆′′1 |dom(∆p) ∩∆p = ∅,
by the above Lemma 53, we know δ1 6∈ ∆′′1 . Since δ1 ∈ ∆1,
we know δ1 ∈ ∆′1. Thus, δ ∈ ∆′1 ∗∆2.

Thus we are done. �

32 2013/4/20

The SPEC-CONJ rule. We first prove Lemmas 62 and 63 below,
which say speculations can be split during executions.

Lemma 60. If ∆→t ∆′ and ∆ = ∆1 ∪∆2,
then there exist ∆′1 and ∆′2 such that ∆1 →t ∆′1, ∆2 →t ∆′2 and
∆′ = ∆′1 ∪∆′2.

Lemma 61. If

1. SpecExact(p),
2. ∆ = ∆1 ∪∆2,
3. (σ,∆1)|dom(p) = (σ′1,∆

′
1), (σ,∆2)|dom(p) = (σ′2,∆

′
2),

then (σ,∆)|dom(p) = (,∆′1 ∪∆′2).

Proof: We know there exist σ′′1 , ∆′′1 , σ′′2 , ∆′′2 and ∆p such that

σ = σ′1] σ′′1 , ∆1 = ∆′1]∆′′1 , (σ′1,∆p) |= p ,
∆′1|dom(∆p) = ∆p , ∆′′1 |dom(∆p) ∩∆p = ∅ ;
σ = σ′2] σ′′2 , ∆2 = ∆′2]∆′′2 , (σ′2,∆p) |= p ,
∆′2|dom(∆p) = ∆p , ∆′′2 |dom(∆p) ∩∆p = ∅ .

Thus
∆ = ∆1 ∪∆2

= (∆′1]∆′′1) ∪ (∆′2]∆′′2)
= (∆′1 ∪∆′2) ∪ (∆′′1 ∪∆′′2) ,
(∆′1 ∪∆′2)|dom(∆p)

= ∆′1|dom(∆p) ∪∆′2|dom(∆p) = ∆p ,
(∆′′1 ∪∆′′2)|dom(∆p) ∩∆p

= (∆′′1 |dom(∆p) ∩∆p) ∪ (∆′′2 |dom(∆p) ∩∆p) = ∅ .

Thus (σ,∆)|dom(p) = (σ′1,∆
′
1 ∪∆′2). �

Lemma 62. For any C̃, C̃′, σ, ∆, σ′, ∆′, ∆1, ∆2 and t, if

1. (C̃, (σ,∆)) ↪−→ t (C̃′, (σ′,∆′)),
2. ∆ = ∆1 ∪∆2,
3. (C̃, (σ,∆1)) 6↪−→ t abort, (C̃, (σ,∆2)) 6↪−→ t abort,

then there exist ∆′1 and ∆′2 such that

1. ∆′ = ∆′1 ∪∆′2,
2. (C̃, (σ,∆1)) ↪−→ t (C̃′, (σ′,∆′1)), and
3. (C̃, (σ,∆2)) ↪−→ t (C̃′, (σ′,∆′2)).

Proof: By case analysis over (C̃, (σ,∆)) ↪−→ t (C̃′, (σ′,∆′)).

1. C̃ is E[c].
Thus (E[c], σ) −_ t (E[skip], σ′) and ∆ = ∆′.
Let ∆′1 = ∆1 and ∆′2 = ∆2, then we can get the conclusion.

2. C̃ is E[return E].
Thus (E[return E], (σ,∆)) ↪−→ t (skip, (σ,∆)), and

JEKσ = n and ∀U. (U,) ∈ ∆ ⇒ U(t) = (end, n) .

Let ∆′1 = ∆1 and ∆′2 = ∆2, then we can get the conclusion.
3. C̃ is E[linself].

Thus (E[linself], (σ,∆)) ↪−→ t (E[skip], (σ,∆′)), and

∆→t ∆′ .

By Lemma 60, we know: there exist ∆′1 and ∆′2 such that
∆1 →t ∆′1, ∆2 →t ∆′2 and ∆′ = ∆′1 ∪∆′2.
Then we can get the conclusion.

4. C̃ is E[trylin(E)].
Thus (E[trylin(E)], (σ,∆)) ↪−→ t (E[skip], (σ,∆ ∪ ∆′)),
and there exists t′ such that

JEKσ = t′ and ∆→t′ ∆′ .

By Lemma 60, we know: there exist ∆′1 and ∆′2 such that
∆1 →t′ ∆′1, ∆2 →t′ ∆′2 and ∆′ = ∆′1 ∪∆′2.
Then we can get the conclusion.

5. C̃ is E[commit(p)]. Below we prove:

If (commit(p), (σ,∆)) ↪−→ t (skip, (σ,∆′)),
∆ = ∆1 ∪∆2,
(commit(p), (σ,∆1)) ↪−→ t (skip, (σ,∆′1)), and
(commit(p), (σ,∆2)) ↪−→ t (skip, (σ,∆′2)),

then ∆′ = ∆′1 ∪∆′2.

We know SpecExact(p), (σ,∆1)|dom(p) = (,∆′1),
(σ,∆2)|dom(p) = (,∆′2) and (σ,∆)|dom(p) = (,∆′). By
Lemma 61, we know (σ,∆)|dom(p) = (,∆′1 ∪ ∆′2). By
Lemma 54, we know ∆′ = ∆′1 ∪∆′2.

6. Other cases are similar.

So we get the conclusion. �

Lemma 63. For any C̃, σ, ∆, ∆1, ∆2 and t, if

1. (C̃, (σ,∆1)) 6↪−→ t abort,
2. (C̃, (σ,∆2)) 6↪−→ t abort,
3. ∆ = ∆1 ∪∆2,

then (C̃, (σ,∆)) 6↪−→ t abort.

Proof: By case analysis over C̃.

1. C̃ is E[c].
Thus (E[c], σ) 6−_ t abort. Then we can get the conclusion.

2. C̃ is E[return E].
Thus JEKσ = n and

∀U. (U,) ∈ ∆1 ⇒ U(t) = (end, n) ,
∀U. (U,) ∈ ∆2 ⇒ U(t) = (end, n) .

Thus ∀U. (U,) ∈ ∆ ⇒ U(t) = (end, n) and we are done.
3. C̃ is E[linself].

Thus ∃∆′1. (∆1 →t ∆′1) and ∃∆′2. (∆2 →t ∆′2).
Since ∆ = ∆1∪∆2, we know ∆→t (∆′1∪∆′2). Then we can
get the conclusion.

4. C̃ is E[commit(p)].
Thus SpecExact(p) and there exist ∆′1 and ∆′2 such that
(σ,∆1)|p = (,∆′1) and (σ,∆2)|p = (,∆′2).
By Lemma 61, we know (σ,∆)|p = (,∆′1 ∪ ∆′2). Then we
can get the conclusion.

5. Other cases are similar.

So we get the conclusion. �

Lemma 64 (Spec-Conjunction-Sound).
If |=t {p}C̃{q} and |=t {p′}C̃{q′}, then |=t {p⊕ p′}C̃{q ⊕ q′}.

Proof: For any σ and ∆ such that (σ,∆) |= (p⊕ p′),
we know there exist ∆1 and ∆2 such that

(σ,∆1) |= p, (σ,∆2) |= p′, and ∆ = ∆1 ∪∆2 .

By the premises, we know

1. for any σ′1 and ∆′1, if (C̃, (σ,∆1)) ↪−→∗t (skip, (σ′1,∆′1)),
then (σ′1,∆

′
1) |= q;

2. (C̃, (σ,∆1)) 6↪−→∗t abort;
3. for any σ′2 and ∆′2, if (C̃, (σ,∆2)) ↪−→∗t (skip, (σ′2,∆′2)),

then (σ′2,∆
′
2) |= q′;

4. (C̃, (σ,∆2)) 6↪−→∗t abort.

Thus, for any σ′ and ∆′, if (C̃, (σ,∆)) ↪−→ ∗t (skip, (σ′,∆′)), by
Lemma 62 and the above 2 and 4, we know: there exist ∆′1 and ∆′2
such that

∆′ = ∆′1 ∪∆′2 ,

33 2013/4/20

(C̃, (σ,∆1)) ↪−→∗t (skip, (σ′,∆′1)) ,
(C̃, (σ,∆2)) ↪−→∗t (skip, (σ′,∆′2)) .

From the above 1 and 3, we know

(σ′,∆′1) |= q and (σ′,∆′2) |= q′ .

Thus we have (σ′,∆′) |= q ⊕ q′.
Finally, by Lemmas 62 and 63, we know (C̃, (σ,∆)) 6↪−→∗t abort.
Thus by Definition 38, we get the conclusion. �

C.3 Proof of Theorem 10 (Logic Soundness w.r.t. Contextual
Refinement and Linearizability)

Theorem 10 is obtained immediately from Lemmas 41, 8 and 9.

D. Linking with Client Program Verification
As we mentioned in Sec. 4, our relational logic as an extension of
LRG can be used to verify client code as well as object implemen-
tations. Moreover, since our logic ensures contextual refinement, it
can provide us with “separation and information hiding” [25] over
the object, but still keep enough information (i.e., the abstract oper-
ations) about the method calls in concurrent client verification. To
verify a program W , we could replace the object implementation
with the abstract operations and verify the corresponding abstract
program W instead. Below we will show a LINK rule which links
object verification with client verification.

D.1 The Assertion Language for Client Verification
We first define the assertion language used to verify client code
W after replacing concrete object implementation with abstract
operations. We use different syntax to distinguish the assertions for
client states and those for object states. The syntax of the assertions
is given below.

(CAssn) P,Q, I ::= p | p | P ∧Q | P ∗Q | P⇒ Q | . . .

(CAct) R,G ::= R | R | R ∧R | R ∗R | . . .

Here p ∈ RelAss and R ∈ RelAct are an assertion and an action in
the assertion language for linearizability verification. The seman-
tics is defined as follows, where we use |=L to represent the seman-
tics in linearizability verification (Figures 9 and 10).

(σc, θ) |= p iff (σc, ∅) |=L p ∧ (θ = ∅)
(σc, θ) |= p iff (∅, {(∅, θ)}) |=L p ∧ (σc = ∅)
(σc, θ) |= P ∗Q iff

∃σ′c, θ′, σ′′c , θ′′. (σc = σ′c] σ′′c) ∧ (θ = θ′] θ′′)
∧ (σ′c, θ

′) |= P ∧ (σ′′c , θ
′′) |= Q

((σc, θ), (σ′c, θ
′)) |= R iff ((σc, ∅), (σ′c, ∅)) |=L R ∧ (θ = θ′ = ∅)

((σc, θ), (σ′c, θ
′)) |= R iff

((∅, {(∅, θ)}), (∅, {(∅, θ′)})) |=L R ∧ (σc = σ′c = ∅)

Similarly, we can also define the assertion language at the con-
crete level, whose syntax is almost the same as that at the abstract
level with one more assertion:

P,Q, I ::= . . . | ϕ−1(p)

The semantics of assertions is defined similarly. Below we only
show the semantics of the newly added assertion.

(σc, σo) |=′ ϕ−1(p) iff (∅, {(∅, ϕ(σo))}) |=L p ∧ (σc = ∅)

D.2 The LINK Rule
Π �ϕ Γ ` {p ∗ r }with Γ do C1‖ . . .‖Cn{q ∗ true }

` {p ∗ ϕ−1(r) }let Π in C1‖ . . .‖Cn{q ∗ true }

The LINK rule simply says that if we know Π is linearizable
w.r.t. Γ (e.g., verified in our relational logic), then the proof of the
partial correctness of the abstract client can be directly translated
to the proof for the concrete client. It relates the verification of Π
to client verification.

To prove the soundness of the LINK rule, we first define the
judgment semantics as follows.

Definition 65 (Judgment Semantics). |= {P}W{Q} iff, for any
σc, θ and K, if (σc, θ) |= P and ∀t. K(t) = ◦, the following are
true:

1. for any σ′c and θ′, if (W, (σc, θ,K)) �−→∗ (skip, (σ′c, θ′,)),
then (σ′c, θ

′) |= Q;
2. (W, (σc, θ,K)) � 6−→∗ abort.

|= {P}W{Q} is defined similarly.

The following lemma says that from the contextual refinement
Π vϕ Γ, we know the termination of the concrete client implies
the termination of the abstract client, and the final client states are
the same.

Lemma 66. For any n, C1, . . . , Cn, σc, σo and θ, if

(1) Π vϕ Γ,
(2) (let Π in C1‖ . . .‖Cn, (σc, σo,K)) 7−→∗ (skip, (σ′′c , ,)),

where ∀t. K(t) = ◦,

then (with Γ do C1‖ . . .‖Cn, (σc, θ,K)) �−→∗ (skip, (σ′′c , ,)),
where ∀t. K(t) = ◦ and ϕ(σo) = θ.

Proof: We assume there is an instruction print state to print out
the whole client state, which simply generates the observable event
(t, out, σc) at the current client state σc.

From C1, . . . , Cn, we construct C′1, . . . , C′n, and from σc, we
construct σ′c and a function f such that σc = f(σ′c), and also the
following hold:

(3) If (let Π in C1‖ . . .‖Cn, (σc, σo,K))
H7−→∗ (skip, (σ′′c , ,)),

then there exist H ′ and σ′′′c such that
σ′′c = f(σ′′′c), H ′ = H :: (, out, σ′′′c) and

(let Π in C′1‖ . . .‖C′n, (σ′c, σo,K))
H′
7−→∗ (skip, (σ′′′c , ,)).

(4) If (with Γ do C′1‖ . . .‖C′n, (σ′c, θ,K))
Ha

�−→∗ and
last(get obsv(Ha)) = (, out, σ′′′c),
then
(with Γ do C1‖ . . .‖Cn, (σc, θ,K)) �−→∗ (skip, (f(σ′′′c), ,)).

Then, we can prove the lemma as follows:
From (2) and (3), we know there exist H ′ and σ′′′c such that
σ′′c = f(σ′′′c), last(get obsv(H ′)) = (, out, σ′′′c) and

(let Π in C′1‖ . . .‖C′n, (σ′c, σo,K))
H′
7−→∗ (skip, (σ′′′c , ,)).

From (1), we know there existsHa such that last(get obsv(Ha)) =

(, out, σ′′′c) and (with Γ do C′1‖ . . .‖C′n, (σ′c, θ,K))
Ha

�−→∗ ,
where ∀t. K(t) = ◦.
From (4), we get the conclusion.

We construct C′1, . . . , C′n, σ′c and the function f as follows:

• If n = 1, let C′1 = (C1; print state) and σ′c = σc. The
function f is an identity function.
• If n ≥ 2, we pick n− 1 fresh variables d2, . . . , dn, and let

C′1 = (C1; if (d2&& . . .&&dn) print state),

and for any i ∈ [2..n], let C′i = (Ci; di := true). Let

σ′c = σc] {d2 false, . . . , dn false}.

The function f is a projection which removes d2, . . . dn.

34 2013/4/20

Π �ϕ Γ ` {p ∗ r }with Γ do C1‖ . . .‖Cn{q ∗ true }

` {p ∗ ϕ−1(r) }let Π in C1‖ . . .‖Cn{q ∗ true }
(LINK)

p⇒ (E = E) ∗ true ∧ (E′ = X) ∗ true (E, r)JΓ(f)Kp(E′, r′)

`t,Γ {p ∗ (x =) ∗ r }x := f(E){p ∗ (x = X) ∗ r′ }
(CALL)

`t,Γ {p ∗ r }x := f(E){q ∗ r′ } p ∗ r ∨ q ∗ r′ ⇒ I ∗ true

[p] ∗ r n r′ ⇒ G ∗ True (p n q) ∗ [r′] ⇒ G ∗ True I .G

[I],G, I `t,Γ {p ∗ r }x := f(E){q ∗ r′ }
(CALL-G)

[I],G, I `t,Γ {P}x := f(E){Q}
Sta({P,Q},R ∗ Id) I .R

R,G, I `t,Γ {P}x := f(E){Q}
(CALL-R)

∀i ∈ [1..n] Ri,Gi, I `i,Γ {Pi ∗ P}Ci{Qi ∗Q′i} Ri =
∨
j 6=iGj I .Ri P ∨Q′i ⇒ I

` {P1 ∗ . . . ∗ Pn ∗ P}with Γ do C1‖ . . .‖Cn{Q1 ∗ . . . ∗Qn ∗ (Q′1 ∧ . . . ∧Q′n)}
(PAR)

Auxiliary definition:

(E, r)JΓ(f)Kp(E′, r′) iff
∀σ, θ, n, θ′, n′. (σ |= p) ∧ (θ |= r) ∧ (JEKσ = n) ∧ (γ(n)(θ) = (n′, θ′))
=⇒ (θ′ |= r′) ∧ (JE′Kσ = n′)

Figure 22. LRG-Style Inference Rules for Client Verification

For both cases, we can prove (3) and (4) hold.
Then we are done. �

Lemma 67 (Soundness of LINK Rule). Let W = let Π in C1 ‖
. . . ‖ Cn and W = with Γ do C1 ‖ . . . ‖ Cn. If Π �ϕ Γ, and

|= {p ∗ r }W{q ∗ true }, then |= {p ∗ ϕ−1(r) }W{q ∗ true }.

Proof: For any σc, σo and K, if (σc, σo) |= p ∗ ϕ−1(r) and
∀t. K(t) = ◦, we prove the following:

(1) for any σ′c and σ′o, if (W, (σc, σo,K)) 7−→∗ (skip, (σ′c, σ′o,)),
then (σ′c, ∅) |=L q;

(2) (W, (σc, σo,K)) 67−→∗ abort.

Since (σc, θ) |= p ∗ ϕ−1(r) , we know (σc, ∅) |=L p and there
exists θ such that ϕ(σo) = θ and (∅, {(∅, θ)}) |=L r.
Since Π �ϕ Γ, we know Π vϕ Γ, thus O [[W, (σc, σo)]] ⊆
O [[W, (σc, θ)]].
For (1), by the above Lemma 66, we know there exists θ′ such that

(W, (σc, θ,K)) �−→∗ (skip, (σ′c, θ′,)),

where ∀t. K(t) = ◦.
Since |= {p ∗ r }W{q ∗ true }, we know (σ′c, ∅) |=L q.
For (2), since |= {p ∗ r }W{q ∗ true }, we know

(W, (σc, θ,K)) � 6−→∗ abort.

Since O [[W, (σc, σo)]] ⊆ O [[W, (σc, θ)]], we get the conclusion. �

D.3 Client Verification
We show the inference rules for ` {P}W{Q} in Figure 22, includ-
ing the rules for method calls and parallel compositions. The rules
allow us the reason about the client code as if it was using the ab-
stract object. The current inference rules in Figure 22 are based on
the plain LRG [8], but they can also be adapted from the standard
rely-guarantee-style rules [17] or CSL-style rules [23].

E. More Examples
In Section 6, we have sketched the proofs of three examples: the
pair snapshot, MS lock-free queue and the CCAS algorithms. In
this section, we give the proofs of the other nine examples we have

verified, and the complete proofs of the MS lock-free queue and the
CCAS algorithm.

To make the proofs more compact and readable, we allow vari-
ables to occur in separate assertions which are starring together, for
example, the following notation is allowed:

(a 7→ b) ∗ (b 7→ null) ,

which can be viewed as a shorthand for (where l is an integer)

∃l. (a 7→ l) ∗ (l 7→ null) ∗ (b = l) .

Besides, when local variables are unused anymore, we can sim-
ply omit them in assertions. In other words, all our assertions are
implicitly starring the ownership of unused local variables, includ-
ing the formal arguments for methods.

E.1 Treiber Stack
We have introduced Treiber stack in Section 2.1. Here we give
its complete implementation in Figure 23(a). The algorithm does
not use fancy techniques such as helping mechanism and future-
dependent linearization points. The abstract PUSH and POP opera-
tions defined in Figure 23(b) manipulate the abstract mathematical
list Stk, and when popping from an empty stack, the POP returns
EMPTY.

We define the precise invariant, the rely and the guarantee in
Figure 24, and show the proof in Figure 25, where we highlight the
instrumented auxiliary commands.

The invariant I in Figure 24 maps the value sequence A of the
concrete list pointed to by S (denoted by ls(S, A, null)) to the
abstract stack Stk. To ensure there is no “ABA” problem [15], we
follow Turon and Wand [29] and introduce a write-only auxiliary
variable GN to remember the nodes which used to be on the stack but
no longer are. The precise invariant for shared states should include
those garbage nodes (garb). GN does not affect the behaviors of the
implementation and is introduced for verification only.

The guarantee includes the push and the pop actions. At the
concrete side, the actions correspond to the linearization points:
line 6 for push and line 17 for pop in Figure 23(a). Note that when
popping a node, we also add the node to GN. The rely of a thread is
the same as its guarantee.

The proof in Figure 25 is straightforward. We let the abstract
operations be executed simultaneously with the concrete code at
linearization points, so that we can ensure when the concrete code
returns, we have the matched abstract return values. Note that when

35 2013/4/20

I
def
= ∃A. ls(S, A, null) ∗ (Stk Z⇒ A) ∗ garb

node(x, v, y)
def
= x 7→ (v, y) node(x)

def
= node(x, ,) garb

def
= ~x∈GN.node(x)

ls(x,A, y)
def
= (x = y ∧A = ε) ∨ (x 6= y ∧ ∃z, v, A′. A = v ::A′ ∧ node(x, v, z) ∗ ls(z,A′, y)) ls(x, y)

def
= ∃A. ls(x,A, y)

R = G
def
= [Push ∨ Pop]I

Push
def
= ∃x, y, v, A. ((S = y) ∗ Stk Z⇒ A) n ((S = x) ∗ node(x, v, y) ∗ Stk Z⇒ v ::A)

Pop
def
= ∃x, y, v, A, Sg . ((S = x) ∗ node(x, v, y) ∗ (GN = Sg) ∗ Stk Z⇒ v ::A) n ((S = y) ∗ node(x, v, y) ∗ (GN = Sg ∪ {x}) ∗ Stk Z⇒ A)

Figure 24. Precise Invariant, Rely and Guarantee of Treiber Stack

struct Node {
int data;
struct Node *next;

}
struct Stack {

struct Node *S;
}

void push(int v) :
local d, x, t;

1 x := cons(v, null);
2 d := 0;
3 while (d = 0) {
4 t := S;
5 x.next := t;
6 d := cas(&S, t, x);
7 }

int pop() :
local v, d, x, t;

8 d := 0;
9 while (d = 0) {

10 t := S;
11 if (t = null) {
12 v := EMPTY;
13 d := 1;
14 } else {
15 v := t.data;
16 x := t.next;
17 d := cas(&S,t,x);
18 }
19 }
20 return v;

(a) Concrete Implementation

θ ∈ {Stk} → List(Int)

PUSH(v)(θ)
def
= (void, θ{Stk v ::θ(Stk)})

POP()(θ)
def
=

{
(v, θ{Stk S}) if θ(Stk) = v ::S
EMPTY otherwise

(b) Abstract Operations

Figure 23. Treiber Stack Code

push(v):
local d, x, t;{
I ∗ cid� (PUSH, v)

}
1 x := cons(v, null);{

I ∗ node(x, v, null) ∗ cid� (PUSH, v)
}

2 d := 0;{
((d = 0) ∗ I ∗ node(x, v, null) ∗ cid� (PUSH, v))
∨ ((d = 1) ∗ I ∗ cid� (end, void))

}
3 while (d = 0) {{

(d = 0) ∗ I ∗ node(x, v, null) ∗ cid� (PUSH, v)
}

4 t := S;
5 x.next := t;{

(d = 0) ∗ I ∗ node(x, v, t) ∗ cid� (PUSH, v)
}

6 < d := cas(&S, t, x); if (d) linself; >
7 }{

(d = 1) ∗ I ∗ cid� (end, void)
}

IntSet GN;
//Auxiliary global variable for verification: popped garbage nodes

pop():
local v, d, x, t;{
I ∗ cid� POP

}
8 d := 0;{

((d = 0) ∗ I ∗ cid� POP)
∨ ((d = 1) ∗ I ∗ cid� (end, v))

}
9 while (d = 0) {{

(d = 0) ∗ I ∗ cid� POP
}

10 < t := S; if (t = null) linself; >{
((d = 0) ∗ I ∗ (t = null) ∗ cid� (end, EMPTY))
∨ ((d = 0) ∗ (I ∧ node(t) ∗ true) ∗ cid� POP)

}
11 if (t = null) {{

(d = 0) ∗ I ∗ (t = null) ∗ cid� (end, EMPTY)
}

12 v := EMPTY;
13 d := 1;{

(d = 1) ∗ I ∗ cid� (end, v)
}

14 } else {{
(d = 0) ∗ (I ∧ node(t) ∗ true) ∗ cid� POP

}
15 v := t.data;
16 x := t.next;{

(d = 0) ∗ (I ∧ node(t, v, x) ∗ true) ∗ cid� POP
}

17 < d := cas(&S,t,x); GN := GN ∪ {t};
18 if (d) linself; >{

((d = 0) ∗ I ∗ cid� POP)
∨ ((d = 1) ∗ I ∗ cid� (end, v))

}
19 }
20 }{

(d = 1) ∗ I ∗ cid� (end, v)
}

21 return v;

Figure 25. Proof Outline for Treiber Stack for Thread cid

36 2013/4/20

popping from an empty stack, the linearization point is at line 10,
where the thread reads the stack pointer. Although at line 10 the
stack is empty, the thread would realize that the pointer is null at
a later time (line 11 succeeds). We cannot linearize the operation
at line 11 or later, because at that time the stack may be not empty
anymore: the environment may have done pushes during the time.

E.2 HSY Elimination-Based Stack
As explained in Sec. 2.2, HSY stack uses elimination, allowing a
push and a pop operations to help each other. We show the complete
implementation in Figure 26. The abstract PUSH and POP operations
are totally the same as those for Treiber stack.

To verify HSY stack in our logic, we first define the precise in-
variant and the rely/guarantee conditions over the shared relational
states in Fig. 27. The invariant I contains three parts. As in Treiber
stack, the stack part stkInv maps the value sequence A of the con-
crete list pointed to by S to the abstract stack Stk. We also introduce
a write-only auxiliary variable GN to remember the nodes which
were popped from the stack. The precise invariant for shared states
should include those garbage nodes (garb). The last part collInv
specifies the collision array coll used by the algorithm to choose
a random slot in the loc array for elimination. It is actually used
as an optimization of him:=rand() at line 7 in Fig. 1(b), and does
not affect our main proofs.

The most important part in I is the elimination part locInv. It
describes the global loc array and the threads whose descriptors
are in the array to be helped by others (Locs). It also contains a set
of thread descriptors (Ds). Once allocated, a thread descriptor will
never be reclaimed in the algorithm (even when it is out of date
and unreachable from loc anymore). We introduce an auxiliary
variable D to remember all of them. Here we use d(p, id, op, n)
to mean p points to the descriptor (id, op, n). Moreover, locInv
contains a set of pushing threads which have been eliminated by
others (EPushes). For these threads, after they put their descriptors
in the loc array, some popping threads come and clear their slots to
inform them that they have been eliminated. These threads need to
check their slots to get this information. After the check, they can
get back their abstract operations (now they must be (end, void))
and return. We use the auxiliary variable EPush to collect these
pushing threads who have not returned their eliminated operations.
Note the three auxiliary variables GN, D and EPush are all write-
only and introduced for verification only.

The rely of thread t includes the guarantees of all the other
threads: Rt

def
=

∨
t′ 6=t Gt′ . The guarantee of thread t, shown in

Fig. 27, can be divided into actions on the central stack (fenced by
stkInv), on the loc array (fenced by locInv) and on the coll array
(fenced by collInv). As usual, the thread can do Push and Pop on
the central stack. It can also update the coll array (UpdColl). For
the locInv part, the thread can allocate its descriptor (AllocD), place
its descriptor in the loc array (PlaceD), and remove its descriptor
(RmvD). It can also eliminate a descriptor in loc array (ElimPush
if it itself is a pop, or ElimPop otherwise). If it is eliminated by
another thread, it can finish the operation by setting the return value
for pop (SetPopV) and removing the descriptor in its slot, or simply
returning its result for push (FinishPush). Since we treat abstract
operations as auxiliary states, we can have ownership transfers on
them, e.g., PlaceDt makes t’s abstract operation become shared,
while RmvDt transfers it back to the thread local state.

We give the proof outlines of the implementation in Figure 30
(for the top-level code StackOp), Figure 28 (for the elimination
part TryCollision), and Figure 29 (for FinishCollision). The
proof is straightforward, and we only explain the most important
part for elimination below.

Fig. 28 shows the proof of the core code for elimination,
TryCollision, which includes line 10 of Fig. 1(b) for a push

struct Node {
int data;
struct Node *next;

}
struct Stack {

struct Node *S;
}
struct ThrdInfo {

int id;
int op;
int data;

}
ThrdInfo *loc[1..thrdNum];
int coll[1..size];

void push(int v) :
local p;

1 p := cons(cid, PUSH, v);
2 StackOp(p);

int pop() :
local p;

3 p := cons(cid, POP, 0);
4 StackOp(p);
5 return p.data;

void StackOp(ThrdInfo p) :
local him, q, pos;

6 while (true) {
7 if (TryStackOp(p))
8 return;
9 loc[cid] := p;

10 pos := GetPosition(p);
11 him := coll[pos];
12 while (!cas(&coll[pos], him, cid))
13 him := coll[pos];
14 if (1 <= him <= thrdNum) {
15 q := loc[him];
16 if (q != null && q.id = him && q.op != p.op)
17 if (cas(&loc[cid], p, null)) {
18 if (TryCollision(p, q))
19 return;
20 else
21 continue;
22 } else {
23 FinishCollision(p);
24 return; }
25 }
26 if (!cas(&loc[cid], p, null)) {
27 FinishCollision(p); return;
28 }
29 }

bool TryCollision(ThrdInfo p, q) :
local b;

30 if (p.op = PUSH) {
31 b := cas(&loc[q.id], q, p);
32 } else if (p.op = POP) {
33 b := cas(&loc[q.id], q, null);
34 if (b) p.data := q.data;
35 }
36 return b;

void FinishCollision(ThrdInfo p) :
37 if (p.op = POP) {
38 p.data := loc[cid].data;
39 loc[cid] := null;
40 }

Figure 26. HSY Stack Code

37 2013/4/20

I
def
= stkInv ∗ locInv ∗ collInv

stkInv
def
= ∃A. ls(S, A, null) ∗ (Stk Z⇒ A) ∗ garb garb

def
= (~x∈GN.node(x))

locInv
def
= Locs ∗ Ds ∗ EPushes Locs

def
= ~t∈[1..thrdNum].((loc[t] = null) ∨ ((loc[t] 6= null) ∗ (t�)))

d(p, id, op, n)
def
= p 7→ (id, op, n) ∧ id ∈ ThrdID ∧ op ∈ {PUSH, POP} Ds

def
= ~p∈D.d(p, , ,)

EPushes
def
= ~t∈EPush.(t� (end, void)) collInv

def
= ~i∈[1..size].(coll[i] =)

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
= [Push ∨ Pop]stkInv ∗ [AllocDt ∨ PlaceDt ∨ RmvDt ∨ ElimPusht ∨ ElimPopt ∨ SetPopVt ∨ FinishPusht]locInv ∗ [UpdColl]collInv

Push
def
= ∃x, y, v, A. ((S = y) ∗ S Z⇒ A) n ((S = x) ∗ node(x, v, y) ∗ S Z⇒ v ::A)

Pop
def
= ∃x, y, v, A, Sg . ((S = x) ∗ node(x, v, y) ∗ (GN = Sg) ∗ S Z⇒ v ::A) n ((S = y) ∗ node(x, v, y) ∗ (GN = Sg ∪ {x}) ∗ S Z⇒ A)

AllocDt
def
= ∃p, Sd. (emp ∗ (D = Sd)) n (d(p, t, ,) ∗ (D = Sd ∪ {p}))

PlaceDt
def
= ∃p, op, n. ((loc[t] = null) ∗ d(p, t, op, n) ∧ p ∈ D) n notDone(p, t, op, n)

RmvDt
def
= ((loc[t] 6= null) ∗ (t�)) n (loc[t] = null)

ElimPusht
def
= ∃i, q, n, Se. (notDone(q, i, PUSH, n) ∗ (EPush = Se) ∧ (i 6= t)) n (elimPush(q, i, n) ∗ (EPush = Se ∪ {i}))

ElimPopt
def
= ∃i, p, q, n, n′. (notDone(q, i, POP, n) ∗ d(p, t, PUSH, n′) ∧ (i 6= t) ∧ (p ∈ D)) n elimPop(q, i, n, p, t, n′)

SetPopVt
def
= ∃p. (d(p, t, POP,) ∧ (p ∈ D)) n d(p, t, POP,)

FinishPusht
def
= ∃S. ((EPush = S ∪ {t}) ∗ t� (end, void)) n (EPush = S)

UpdColl
def
= ∃i. (coll[i] =) n (coll[i] =)

notDone(p, t, op, n)
def
= d(p, t, op, n) ∗ (loc[t] = p) ∗ (t� (op, n)) ∧ (p ∈ D)

elimPush(p, t, n)
def
= d(p, t, PUSH, n) ∗ (loc[t] = null) ∗ (t� (end, void)) ∧ (p ∈ D)

elimPop(p, t, n, q, t′, n′)
def
= d(p, t, POP, n) ∗ (loc[t] = q) ∗ d(q, t′, PUSH, n′) ∗ (t� (end, n′)) ∧ (t 6= t′) ∧ (p, q ∈ D)

I′
def
= (locInv ∧ locSubsetD) ∗ collInv locSubsetD

def
= ∀t, p. ((loc[t] = p) ∧ (p 6= null))⇒ p ∈ D

notInLoc(p, op, n)
def
= I′ ∧ (loc[cid] = null) ∗ d(p, cid, op, n) ∗ true ∧ (p ∈ D)

begin(p, op)
def
= ∃n. notInLoc(p, op, n) ∗ (cid� (op, n))

endPush(p)
def
= notInLoc(p, PUSH,) ∗ (cid� (end, void)) endPop(p)

def
= ∃n. notInLoc(p, POP, n) ∗ (cid� (end, n))

envElimMyPush(p)
def
= I′ ∧ elimPush(p, cid,) ∗ true envElimMyPop(p)

def
= I′ ∧ elimPop(p, cid, , , ,) ∗ true

publish(p, op)
def
= (I′ ∧ notDone(p, cid, op,) ∗ true) ∨ (envElimMyPush(p) ∧ op = PUSH) ∨ (envElimMyPop(p) ∧ op = POP)

hisDesc(q, op)
def
= ∃n. ((loc[him] = q) ∗ (him� (op, n)) ∨ (loc[him] 6= q)) ∗ d(q, him, op, n) ∗ true ∧ (q ∈ D)

toElim(p, op, q)
def
= ∃n. (notInLoc(p, op, n) ∧ hisDesc(q, op′) ∧ op 6= op′) ∗ (cid� (op, n))

unfinishedPop(p, q)
def
= ∃n′. (notInLoc(p, POP,) ∧ d(q, , PUSH, n′) ∗ true) ∗ (cid� (end, n′))

Figure 27. Precise Invariant, Rely/Guarantee and Auxiliary Definitions of HSY Stack (for Thread t)

Frame out: stkInv ∗ collInv

TryCollision(ThrdInfo p, q) local b;
{∃op. toElim(p, op, q)}
if (p.op = PUSH) {
{toElim(p, PUSH, q)}
< b := cas(&loc[q.id], q, p);

if (b) { lin(p.id); lin(q.id); } >

{(b ∧ endPush(p)) ∨ (¬b ∧ toElim(p, PUSH, q))}
} else if (p.op = POP) {
{toElim(p, POP, q)}
< b := cas(&loc[q.id], q, null);

if (b) { EPush := EPush ∪ {q.id};
lin(q.id); lin(p.id); } >

{(b ∧ unfinishedPop(p, q)) ∨ (¬b ∧ toElim(p, POP, q))}
if (b) p.data := q.data;
{(b ∧ endPop(p)) ∨ (¬b ∧ toElim(p, POP, q))}

}{
(b ∧ (endPush(p) ∨ endPop(p))) ∨ (¬b ∧ ∃op. toElim(p, op, q))

}
Figure 28. Proof Outline of TryCollision in HSY Stack

Frame out: stkInv ∗ collInv

void FinishCollision(ThrdInfo p)
{envElimMyPush(p) ∨ envElimMyPop(p)}
if (p.op = POP) {
{envElimMyPop(p)}
p.data := loc[cid].data;
{∃n. I′ ∧ elimPop(p, cid, n, , , n) ∗ true}
loc[cid] := null;
{endPop(p)}

} else if (p.op = PUSH) {
{envElimMyPush(p)}
EPush := EPush \ {cid};
{endPush(p)}

}
{endPush(p) ∨ endPop(p)}

Figure 29. Proof Outline of FinishCollision in HSY Stack

operation and the corresponding code for a pop operation. We in-
sert lin(p.id) and lin(q.id) at LPs, to linearize the threads p.id
(which is cid) and q.id (which is him). We give auxiliary defini-
tions in Fig. 27. The precondition says that, before the elimination,
the current thread has not done its operation (cid � (op, n)),

38 2013/4/20

Frame out: stkInv

IntSet GN; //Aux: popped garbage nodes
IntSet D; //Aux: all thread descriptors (added into D when allocated)
IntSet EPush; //Aux: eliminated pushes

void StackOp(ThrdInfo p)
local him, q, pos, r;
{∃op. begin(p, op)}
while(true) {

if (TryStackOp(p))
{endPush(p) ∨ endPop(p)}
return;

{∃op. begin(p, op)}
loc[cid] := p;
{∃op. publish(p, op)}
pos := GetPosition(p);
him := coll[pos];
while (!cas(&coll[pos], him, cid))

him := coll[pos];
if (1 <= him <= thrdNum) {

q := loc[him];
if (q != null && q.id = him && q.op != p.op) {
{∃op. publish(p, op) ∧ hisDesc(q, op′) ∧ op 6= op′}
if (cas(&loc[cid], p, null)) {
{∃op. toElim(p, op, q)}
if (TryCollision(p, q))
{endPush(p) ∨ endPop(p)}
return;

else
{∃op. begin(p, op)}
continue;

} else {
{envElimMyPush(p) ∨ envElimMyPop(p)}
FinishCollision(p);
{endPush(p) ∨ endPop(p)}
return; }

}
}
{∃op. publish(p, op)}
if (!cas(&loc[cid], p, null)) {
{envElimMyPush(p) ∨ envElimMyPop(p)}
FinishCollision(p);
{endPush(p) ∨ endPop(p)}
return;

}
{∃op. begin(p, op)}

}

Figure 30. Proof Outline of StackOp in HSY Stack (Thread cid)

its descriptor p is not in the loc array (notInLoc) and it knows
the descriptor q (hisDesc) which holds an opposite operation. The
postcondition says that, if the elimination is successful (b holds),
the current thread has done its operation (endPush or endPop).
In the proof, we can frame out the central stack and the collision
array by the FRAME rule. Abstract operations as auxiliary states are
no different from normal states. Since the algorithm does not have
future-dependent LPs, we do not need speculation.

E.3 MS Two-Lock Queue
Michael and Scott’s two-lock queue [22] uses a linked list with
Head and Tail pointers to implement a queue. We show the con-
crete implementation in Figure 31(a). The list always contain a sen-
tinel node (it is allocated when constructing a new queue, as shown
in the initialize method). Enqueue operates on the tail of the
queue, while dequeue operates at the head of the queue, which al-
ways replaces the sentinel node by its next node and returns the
value in the new sentinel node. The concrete queue is protected by
two locks, Hlock and Tlock. They ensure that at most one enqueue

struct Node {
int val;
struct Node *next;

}
struct Queue {

struct Node *Head;
struct Node *Tail;
int Hlock;
int Tlock;

}
initialize(){

local dummy;
dummy := cons(0, null);
Head := dummy;
Tail := dummy;
Hlock := 0;
Tlock := 0;

}

enq(v) :
local x;

1 x := cons(v, null);
2 lock(Tlock);
3 Tail.next := x;
4 Tail := x;
5 unlock(Tlock);

int deq() :
local h, s, v;

6 lock(Hlock);
7 h := Head;
8 s := h.next;
9 if (s = null) {

10 unlock(Hlock);
11 return EMPTY;
12 }
13 v := s.val;
14 Head := s;
15 unlock(Hlock);
16 return v;

(a) Concrete Implementation

θ ∈ {Q} → List(Int)

ENQ(v)(θ)
def
= (void, θ{Q θ(Q) ::v})

DEQ()(θ)
def
=

{
(v, θ{Q q}) if θ(Q) = v ::q
EMPTY otherwise

(b) Abstract Operations

Figure 31. MS Two-Lock Queue Code

thread and one dequeue thread at a time can access the queue. Also,
since we have two locks, an enqueue thread do not need to wait for
a dequeue thread, or vice versa.

As well as the stack in previous sections, we represent an ab-
stract queue Q by a sequence of values. The abstract ENQ and DEQ
operations, as defined in Figure 31, append values at the end of the
abstract queue and remove the first value in the sequence respec-
tively. When the queue is empty, we assume DEQ returns EMPTY.

We define the precise invariant, the rely and the guarantee in
Figure 32, and show the proof in Figure 33, where we highlight the
instrumented auxiliary commands.

The invariant I in Figure 32 maps the concrete list to the abstract
queue. Intuitively, the value sequence in the concrete list should
be the same as the abstract side, but sometimes the situations are
trickier:

39 2013/4/20

I
def
= ∃A. (unlagq(A) ∨ lagq(, A) ∨ cross(A)) ∗ (Q Z⇒ A) ∗ garb

node(x, v, y)
def
= x 7→ (v, y) node(x, y)

def
= node(x, , y) garb

def
= ~x∈GN.node(x,)

last2(t, v, x, v′)
def
= node(t, v, x) ∗ node(x, v′, null) last2(t, x)

def
= ∃v, v′. last2(t, v, x, v′)

ls(x,A, y)
def
= (x = y ∧A = ε) ∨ (x 6= y ∧ ∃z, v, A′. A = v ::A′ ∧ node(x, v, z) ∗ ls(z,A′, y)) ls(x, y)

def
= ∃A. ls(x,A, y)

unlagq(A)
def
= ∃vd, v, A′. (vd ::A = A′ ::v) ∧ ls(Head, A′, Tail) ∗ node(Tail, v, null) ∗ (Hlock =) ∗ (Tlock =)

lagq(x,A)
def
= ∃vd, v, v′, A′. (vd ::A = A′ ::v ::v′) ∧ ls(Head, A′, Tail) ∗ last2(Tail, v, x, v′) ∗ (Hlock =) ∗ (Tlock 6= 0)

cross(A)
def
= (A = ε) ∧ node(Tail, Head) ∗ node(Head, null) ∗ (Hlock =) ∗ (Tlock 6= 0) cross

def
= ∃A. cross(A)

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
= [Enqt ∨ Deqt ∨ Swingt ∨ LockHt ∨ UnlockHt ∨ LockTt ∨ UnlockTt]I

Enqt
def
= ∃v, v′, A. ((Tlock = t) ∗ node(Tail, v, null) ∗ Q Z⇒ A) n ((Tlock = t) ∗ last2(Tail, v, , v′) ∗ Q Z⇒ A ::v′)

Deqt
def
= ∃v,A, x, y, z, S. ((Hlock = t) ∗ (Head = x) ∧ node(x, y) ∗ node(y, v, z) ∗ (GN = S) ∗ Q Z⇒ v ::A)

n ((Hlock = t) ∗ (Head = y) ∧ node(x, y) ∗ node(y, z) ∗ (GN = S ∪ {x}) ∗ Q Z⇒ A)

Swingt
def
= ∃v, v′, x, y. ((Tlock = t) ∗ (Tail = x) ∧ last2(x, v, y, v′)) n ((Tlock = t) ∗ (Tail = y) ∧ last2(x, v, y, v′))

LockHt
def
= (Hlock = 0) n (Hlock = t) UnlockHt

def
= (Hlock = t) n (Hlock = 0)

LockTt
def
= (Tlock = 0) n (Tlock = t) LockTt

def
= (Tlock = t) n (Tlock = 0)

Figure 32. Precise Invariant, Rely and Guarantee of MS Two-Lock Queue (for Thread t)

1. The enq method first appends the new node to the list and then
update the Tail pointer. This means, Tail may lag behind the
end of the list. Nevertheless, Tail always points to either the
last node or a node pointing to the last node in the list.

2. Starting from an empty list, when the deq operation happens in
the middle of the enq operation, the Tail may point to an old
sentinel node which have been dequeued. In this case, Head and
Tail will “cross”: Tail points to a node, whose next node is
pointed to by Head. The queue is “empty” at that time (it only
contains the new sentinel node).

Thus in the invariant I , we distinguish three cases: unlagq de-
scribes the concrete queue when Tail does not lag behind (i.e.,
Tail’s next is null), lagq specifies a non-empty queue whose
Tail has not yet swung to the end, and cross is for the queue when
Head and Tail cross. The value sequenceA should not contain the
value of the sentinel node, but should contain the new end node
even if Tail lags behind. It corresponds to the abstract queue Q.
Also, as in the stack algorithms, the precise invariant I contains the
garbage nodes (garb). We introduce the write-only auxiliary vari-
able GN to remember those nodes which were once on the queue
but have been dequeued.

The guarantee defined in Figure 32 allows a thread to require
and release the Hlock and Tlock locks (LockH, UnlockH, LockT
and UnlockT), to enqueue a node at Tail when holding the Tlock
lock (Enq), to swing the Tail pointer to the end node (Swing), and
to dequeue a node at Head when holding the Head lock (Deq).

The linearization points of the implementation are at line 3 for
ENQ, line 8 for DEQ from an empty queue, and line 14 for DEQ
from a non-empty queue. They do not involve helping mechanism
or depend on future executions.

The proof shown in Figure 33 follows the rely-guarantee reason-
ing. We need to make sure an assertion at each program point is sta-
ble w.r.t. the environment actions. In particular, for the enq method,
we need to consider possible Deq actions from the environment.
Thus before line 4, the Tail pointer lags behind and it may also
cross with the Head pointer. Similarly, for the deq method, we need
to take into account possible Enq and Swing actions from the envi-
ronment.

E.4 MS Lock-Free Queue
In addition to the two-lock queue, Michael and Scott also propose
a lock-free queue [22]. We have shown its code in Figure 15.

We have discussed the instrumentation in Sec. 6.2. Here we
define the precise invariant, the rely and the guarantee in Figure 34,
and show the proof in Figures 35 and 36, where we highlight the
instrumented auxiliary commands.

The invariant I in Figure 34 maps the value sequence in the
concrete list to the abstract queue Q. As in the MS two-lock queue,
we need to consider the case when the Tail pointer lags behind the
end of the list. But here, Head and Tail will never cross, because in
this algorithm, a thread will dequeue a node only when Head does
not equal Tail. First, the check at line 22 in Figure 15 compares
h and t which was read from Tail. If they are not equal, we
know h cannot be equal to the current Tail. Besides, at line 28,
a node is dequeued only when h is still Head. Thus at line 28 when
swinging Head to the next node, Head must be different from Tail.
This means, Head will never go “faster” than Tail, and they will
never cross. As usual, I still contains the garbage nodes (garb).
We use the auxiliary variable GN to collect those nodes which were
dequeued from the list.

The guarantee G defined in Figure 34 contains three actions:
enqueue, dequeue and swing the Tail pointer. Their definitions are
very similar to those for the two-lock queue in Appendix E.3, but
without locks. An important difference is that, here Deq requires
Head is not equal to Tail before the action. This is the key to
ensuring that Head and Tail will not cross, as we discussed.

The proofs in Figures 35 and 36 follow the intuition of the
algorithm. Our logic and code instrumentation provide a powerful
technique to express and reason about speculation.

We also verify a variant of the deq method which does not
need speculation. The code with the proof is shown in Figure 37,
where we just remove the rechecking at line 21 in Figure 15. Then,
line 20 is a fixed linearization point. We insert linself at line 20
and do not need commit anymore. The proof is very similar to
the original deq’s proof, which confirms our understanding that the
rechecking is an optimization, and does not affect the correctness
of the algorithm.

40 2013/4/20

Iunlag(t)
def
= ∃A. unlagq(A) ∗ (Q Z⇒ A) ∗ garb ∧ (Tlock = t) ∗ true

Ilag(t, x)
def
= ∃A. (lagq(x,A) ∨ (cross(A) ∧ x = Head)) ∗ (Q Z⇒ A) ∗ garb ∧ (Tlock = t) ∗ true

enq(v):
local x;{
I ∗ cid� (ENQ, v)

}
1 x := cons(v, null);{

I ∗ node(x, v, null) ∗ cid� (ENQ, v)
}

2 lock(Tlock);{
Iunlag(cid) ∗ node(x, v, null) ∗ cid� (ENQ, v)

}
3 < Tail.next := x; linself; >{

Ilag(cid, x) ∗ cid� (end, void)
}

4 Tail := x;{
(Iunlag(cid) ∧ (Tail = x) ∗ true) ∗ cid� (end, void)

}
5 unlock(Tlock);{

I ∗ cid� (end, void)
}

readheadnext null(s)
def
= (s = null) ∗ (cross ∨ ls(Head, Tail)) ∗ true

readheadnext notnull(s)
def
= (node(Head, s) ∗ ls(s, Tail) ∗ true) ∨ ((Head = Tail) ∗ node(Head, s) ∗ node(s, null) ∗ true)

readval(s, v)
def
= (s = Tail ∧ (node(s, v, null) ∨ last2(s, v, ,))) ∨ (s 6= Tail ∧ ∃x. node(s, v, x) ∗ ls(x, Tail))

readnextval(h, s, v)
def
= node(h, s) ∗ (readval(s, v) ∨ (Tail = h) ∗ node(s, v, null))

IntSet GN; //Auxiliary global variable for verification: dequeued nodes

deq():
local h, s, v;{
I ∗ cid� DEQ

}
6 lock(Hlock);{

(I ∧ (Hlock = t) ∗ true) ∗ cid� DEQ
}

7 h := Head;{
(I ∧ ((Hlock = t) ∧ (h = Head)) ∗ true) ∗ cid� DEQ

}
8 < s := h.next; if (s = null) linself; >{

(I ∧ ((Hlock = t) ∧ (h = Head)) ∗ true ∧ readheadnext null(s)) ∗ cid� (end, EMPTY)
∨ (I ∧ ((Hlock = t) ∧ (h = Head)) ∗ true ∧ readheadnext notnull(s)) ∗ cid� DEQ

}
9 if (s = null) {{

(I ∧ ((Hlock = t) ∧ (h = Head)) ∗ true ∧ readheadnext null(s)) ∗ cid� (end, EMPTY)
}

10 unlock(Hlock);{
I ∗ cid� (end, EMPTY)

}
11 return EMPTY;
12 }{

(I ∧ ((Hlock = t) ∧ (h = Head)) ∗ true ∧ readheadnext notnull(s)) ∗ cid� DEQ
}

13 v := s.val;{
(I ∧ ((Hlock = t) ∧ (h = Head)) ∗ true ∧ readnextval(Head, s, v) ∗ true) ∗ cid� DEQ

}
14 < Head := s; GN := GN ∪ {h}; linself; >{

(I ∧ (Hlock = t) ∗ true) ∗ cid� (end, v)
}

15 unlock(Hlock);{
I ∗ cid� (end, v)

}
16 return v;

Figure 33. Proof Outline of MS Two-Lock Queue for Thread cid

41 2013/4/20

I
def
= ∃A. lsq(A) ∗ Q Z⇒ A ∗ garb

node(x, v, y)
def
= x 7→ (v, y) node(x, y)

def
= node(x, , y) garb

def
= ~x∈GN.node(x,)

last2(t, v, x, v′)
def
= node(t, v, x) ∗ node(x, v′, null) last2(t, x)

def
= ∃v, v′. last2(t, v, x, v′)

tails(t, x, A)
def
= ∃v, v′. (A = v ∧ node(t, v, x) ∧ x = null) ∨ (A = v ::v′ ∧ last2(t, v, x, v′)) tails(t, x)

def
= ∃A. tails(t, x, A)

ls(x,A, y)
def
= (x = y ∧A = ε) ∨ (x 6= y ∧ ∃z, v, A′. A = v ::A′ ∧ node(x, v, z) ∗ ls(z,A′, y)) ls(x, y)

def
= ∃A. ls(x,A, y)

lsq(A)
def
= ∃v,A′, A′′. (v ::A = A′ ::A′′) ∧ ls(Head, A′, Tail) ∗ tails(Tail, , A′′)

R = G
def
= [Enq ∨ Deq ∨ Swing]I

Enq
def
= ∃v, v′, A, x. (node(Tail, v, null) ∗ Q Z⇒ A) n (last2(Tail, v, x, v′) ∗ Q Z⇒ A ::v′)

Deq
def
= ∃v,A, x, y, z, S. (Head = x ∧ x 6= Tail ∧ node(x, y) ∗ node(y, v, z) ∗ (GN = S) ∗ Q Z⇒ v ::A)

n(Head = y ∧ node(x, y) ∗ node(y, z) ∗ (GN = S ∪ {x}) ∗ Q Z⇒ A)

Swing
def
= ∃v, v′, x, y. (Tail = x ∧ last2(x, v, y, v′)) n (Tail = y ∧ last2(x, v, y, v′))

Figure 34. Precise Invariant, Rely and Guarantee of MS Lock-Free Queue

readnext envenq(t, s)
def
= (s = null) ∧ ∃x. node(t, x) ∗ node(x,)

readtailnext(t, s)
def
= (t = Tail ∧ tails(t, s)) ∨ (t 6= Tail ∧ node(t, s) ∗ ls(s, Tail)) ∨ readnext envenq(t, s)

enq(v):
local x, t, s, r;{
I ∗ cid� (ENQ, v)

}
1 x := cons(v, null);{

I ∗ node(x, v, null) ∗ cid� (ENQ, v)
}

2 while (true) {
3 t := Tail;{

(I ∧ ls(t, Tail) ∗ true) ∗ node(x, v, null) ∗ cid� (ENQ, v)
}

4 s := t.next;{
(I ∧ readtailnext(t, s) ∗ true) ∗ node(x, v, null) ∗ cid� (ENQ, v)

}
5 if (t = Tail) {{

(I ∧ readtailnext(t, s) ∗ true) ∗ node(x, v, null) ∗ cid� (ENQ, v)
}

6 if (s = null) {{
(I ∧ ((t = Tail ∧ node(t, s) ∧ s = null) ∨ readnext envenq(t, s)) ∗ true) ∗ node(x, v, null) ∗ cid� (ENQ, v)

}
7 < r := cas(&(t.next), s, x); if (r) linself; >{

r = 0 ∗ I ∗ node(x, v, null) ∗ cid� (ENQ, v)
∨ r = 1 ∗ (I ∧ (t = Tail⇒ last2(t, x)) ∗ true) ∗ cid� (end, void)

}
8 if (r) {{

r = 1 ∗ (I ∧ (t = Tail⇒ last2(t, x)) ∗ true) ∗ cid� (end, void)
}

9 cas(&Tail, t, x);{
r = 1 ∗ I ∗ cid� (end, void)

}
10 return;
11 }{

r = 0 ∗ I ∗ node(x, v, null) ∗ cid� (ENQ, v)
}

12 } else{
(I ∧ (t = Tail⇒ last2(t, s)) ∗ true) ∗ node(x, v, null) ∗ cid� (ENQ, v)

}
13 cas(&Tail, t, s);{

I ∗ node(x, v, null) ∗ cid� (ENQ, v)
}

14 }
15 }

Figure 35. Proof Outline for Enqueue of MS Lock-Free Queue for Thread cid

42 2013/4/20

readheadnext aftertail(h, s, t)
def
= (h = t ∧ readtailnext(t, s)) ∨ (h 6= t ∧ node(h, s) ∗ ls(s, t) ∗ ls(t, Tail))

readval(s, v)
def
= (s = Tail ∧ (node(s, v, null) ∨ last2(s, v, ,))) ∨ (s 6= Tail ∧ ∃x. node(s, v, x) ∗ ls(x, Tail))

IntSet GN; //Auxiliary global variable for verification: dequeued nodes

deq():
local h, t, s, v, r;{
I ∗ cid� DEQ

}
16 while (true) {
17 h := Head;{

(I ∧ ls(h, Head) ∗ true) ∗ cid� DEQ
}

18 t := Tail;{
(I ∧ ls(h, Head) ∗ true ∧ ls(h, t) ∗ ls(t, Tail) ∗ true) ∗ cid� DEQ

}
19 < s := h.next; if (h = t && s = null) trylinself; >{

(I ∧ ls(h, Head) ∗ true ∧ readheadnext aftertail(h, s, t) ∗ true)
∗ ((h = t ∧ s = null ∧ (cid� DEQ⊕ cid� (end, EMPTY))) ∨ ((h 6= t ∨ s 6= null) ∧ cid� DEQ))

}
20 if (h = Head) {
21 if (h = t) {
22 if (s = null) {{

I ∗ (h = t ∧ s = null ∧ (cid� DEQ⊕ cid� (end, EMPTY)))
}

23 commit(cid� (end, EMPTY));{
I ∗ (h = t ∧ s = null ∧ cid� (end, EMPTY))

}
24 return EMPTY;
25 }{

(I ∧ h = t ∧ s 6= null ∧ readtailnext(t, s) ∗ true) ∗ cid� DEQ
}{

(I ∧ (t = Tail⇒ last2(t, s)) ∗ true) ∗ cid� DEQ
}

26 cas(&Tail, t, s);{
I ∗ cid� DEQ

}
27 } else {{

(I ∧ h 6= t ∧ node(h, s) ∗ ls(s, Tail) ∗ true) ∗ cid� DEQ
}

28 v := s.val;{
(I ∧ node(h, s) ∗ readval(s, v) ∗ true) ∗ cid� DEQ

}
29 < r := cas(&Head, h, s); GN := GN ∪ {h}; if (r) linself; >{

r = 0 ∗ I ∗ cid� DEQ
∨ r = 1 ∗ I ∗ cid� (end, v)

}
30 if (r)
31 return v;
32 }
33 } else {
34 commit(cid� DEQ);{

I ∗ cid� DEQ
}

35 }
36 }

Figure 36. Proof Outline for Dequeue of MS Lock-Free Queue for Thread cid

43 2013/4/20

IntSet GN; //Auxiliary global variable for verification: dequeued nodes

deq_without_rechecking():
local h, t, s, v, r;{
I ∗ cid� DEQ

}
16 while (true) {
17 h := Head;{

(I ∧ ls(h, Head) ∗ true) ∗ cid� DEQ
}

18 t := Tail;{
(I ∧ ls(h, Head) ∗ true ∧ ls(h, t) ∗ ls(t, Tail) ∗ true) ∗ cid� DEQ

}
19 < s := h.next; if (h = t && s = null) linself; >{

(I ∧ ls(h, Head) ∗ true ∧ readheadnext aftertail(h, s, t) ∗ true)
∗ ((h = t ∧ s = null ∧ cid� (end, EMPTY)) ∨ ((h 6= t ∨ s 6= null) ∧ cid� DEQ))

}
20 if (h = t) {
21 if (s = null) {{

I ∗ (h = t ∧ s = null ∧ cid� (end, EMPTY))
}

22 return EMPTY;
23 }{

(I ∧ h = t ∧ s 6= null ∧ readtailnext(t, s) ∗ true) ∗ cid� DEQ
}{

(I ∧ (t = Tail⇒ last2(t, s)) ∗ true) ∗ cid� DEQ
}

24 cas(&Tail, t, s);{
I ∗ cid� DEQ

}
25 } else {{

(I ∧ h 6= t ∧ node(h, s) ∗ ls(s, Tail) ∗ true) ∗ cid� DEQ
}

26 v := s.val;{
(I ∧ node(h, s) ∗ readval(s, v) ∗ true) ∗ cid� DEQ

}
27 < r := cas(&Head, h, s); GN := GN ∪ {h}; if (r) linself; >{

r = 0 ∗ I ∗ cid� DEQ
∨ r = 1 ∗ I ∗ cid� (end, v)

}
28 if (r)
29 return v;
30 }
31 }

Figure 37. Proof Outline for a Variant of Dequeue in MS Lock-Free Queue (Without Rechecking)

44 2013/4/20

E.5 DGLM Queue
Doherty et al. [6] present an optimized version of the deq method
in MS lock-free queue, and verify the algorithm by constructing a
forward and a backward simulations.

We show the code of their deq method in Figure 38 (the enq
method is the same as MS lock-free queue). This new version tests
whether Tail points to the sentinel node (line 11 in Figure 38) only
after Head has been updated (line 9), while in Michael and Scott’s
version, the test (line 22 in Figure 15) is performed before knowing
the queue is not empty.

In Figure 39, we show the proof for the DGLM queue using
our logic. The precise invariant and the rely/guarantee conditions
are almost the same as MS lock-free queue. We only show up the
differences in Figure 39.

Since now deq allows to dequeue a node when Head equals to
Tail, the Head and Tail pointers may cross in some executions.
Thus the invariant I should consider the case cross, and the action
Deq also needs to be slightly changed.

The linearization points are at similar locations as in MS lock-
free queue. The proof of enq is the same and omitted here. Since
DGLM queue still rechecks the reads of Head and Tail, the loca-
tion of a linearization point for the DEQ which returns EMPTY will
depend on the future, just like the original MS lock-free queue.
Thus we still insert trylinself and commit to handle the LP.

In the proof, we also need to carefully make sure that the
assertion at each program point is stable w.r.t. the new environment
actions.

int deq() :
local h, t, s, v;

1 while (true) {
2 h := Head;
3 s := h.next;
4 if (h = Head) {
5 if (s = null) {
6 return EMPTY;
7 }
8 v := s.val;
9 if (cas(&Head, h, s)) {

10 t := Tail;
11 if (h = t) {
12 cas(&Tail, t, s);
13 }
14 return v;
15 }
16 }
17 }

(Only deq is different from MS Lock-Free Queue)

Figure 38. DGLM Queue Code

45 2013/4/20

I
def
= ∃A. (lsq(A) ∨ cross(A)) ∗ (Q Z⇒ A) ∗ garb (lsq and garb are the same as MS lock-free queue.)

cross(A)
def
= (A = ε) ∧ node(Tail, Head) ∗ node(Head, null)

R = G
def
= [Enq ∨ Deq ∨ Swing]I (Enq and Swing are the same as MS lock-free queue.)

Deq
def
= ∃v,A, x, y, z, S. (Head = x ∧ node(x, y) ∗ node(y, v, z) ∗ (GN = S) ∗ Q Z⇒ v ::A)

n(Head = y ∧ node(x, y) ∗ node(y, z) ∗ (GN = S ∪ {x}) ∗ Q Z⇒ A) (Not require Head 6= Tail)

readnext(h, s)
def
= node(h, s) ∗ (s = null ∨ ls(s, Tail) ∨ (Tail = h) ∗ node(s, null))

readheadnext(h, s)
def
= (h = Head ∧ readnext(h, s)) ∨ (h 6= Head ∧ node(h, s) ∗ ls(s, Head)) ∨ readnext envenq(h, s)

readnextval(h, s, v)
def
= node(h, s) ∗ (readval(s, v) ∨ (Tail = h) ∗ node(s, v, null))

IntSet GN; //Auxiliary global variable for verification: dequeued nodes

deq():
local h, t, s, v, r;{
I ∗ cid� DEQ

}
1 while (true) {
2 h := Head;{

(I ∧ ls(h, Head) ∗ true) ∗ cid� DEQ
}

3 < s := h.next; if (h = Head && s = null) trylinself; >{
(I ∧ ls(h, Head) ∗ true ∧ readheadnext(h, s) ∗ true)
∗ ((s = null ∧ (cid� DEQ⊕ cid� (end, EMPTY))) ∨ ((h 6= Head ∨ s 6= null) ∧ cid� DEQ))

}
4 if (h = Head) {
5 if (s = NULL) {{

I ∗ (s = null ∧ (cid� DEQ⊕ cid� (end, EMPTY)))
}

6 commit(cid� (end, EMPTY));{
I ∗ (s = null ∧ cid� (end, EMPTY))

}
7 return EMPTY;
8 }{

(I ∧ readheadnext(h, s) ∗ true) ∗ (s 6= null ∧ cid� DEQ)
}

9 v := s.val;{
(I ∧ (h = Head⇒ readnextval(h, s, v)) ∗ true) ∗ cid� DEQ

}
10 < r := cas(&Head, h, s); GN := GN ∪ {h}; if (r) linself; >{

((r = 0) ∗ I ∗ cid� DEQ) ∨ ((r = 1) ∗ (I ∧ node(h, s) ∗ ls(s, Head) ∗ true) ∗ cid� (end, v))
}

11 if (r) {{
(r = 1) ∗ (I ∧ node(h, s) ∗ ls(s, Head) ∗ true) ∗ cid� (end, v)

}
12 t := Tail;{

(I ∧ node(h, s) ∗ ls(s, Head) ∗ true ∧ ls(t, Tail) ∗ true) ∗ cid� (end, v)
}

13 if (h = t) {{
(I ∧ node(t, s) ∗ ls(s, Head) ∗ true ∧ ls(t, Tail) ∗ true) ∗ cid� (end, v)

}{
(I ∧ (t = Tail⇒ last2(t, s)) ∗ true) ∗ cid� (end, v)

}
14 cas(&Tail, t, s);{

I ∗ cid� (end, v)
}

15 }{
I ∗ cid� (end, v)

}
16 return v;
17 }
18 } else {
19 commit(cid� DEQ);{

I ∗ cid� DEQ
}

20 }
21 }

Figure 39. Proof for DGLM Queue

46 2013/4/20

locate(e):
local p, c, u;{
I ∧ (MIN < e)

}
p := Head;
lock(p);
c := p.next;
u := c.data;{
∃v. adjacent(p, v, c, u) ∧ (v < e)

}
while (u < e) {

lock(c);
unlock(p);
p := c;
c := p.next;
u := c.data;

}{
∃v, u. adjacent(p, v, c, u) ∧ (v < e ≤ u)

}
return (p, c);

Figure 42. Proof Outline of Locate in Lock-Coupling List

add(e):
local x, y, z, u, r;{
I ∗ cid� (ADD, e) ∧ (MIN < e < MAX)

}
(x, z) := locate(e);{
∃v, u. adjacent(x, v, z, u) ∗ cid� (ADD, e)
∧ (v < e ≤ u) ∧ (e < MAX)

}
u := z.data;
if (u != e) {{
∃v. adjacent(x, v, z, u) ∗ cid� (ADD, e) ∧ (v < e < u)

}
y := cons(0, e, z);{
∃v. adjacent(x, v, z, u) ∗ U(y, e, z) ∗ cid� (ADD, e)
∧ (v < e < u)

}
< x.next := y; linself; >{
∃v. adjacent(x, v, y, e) ∗ cid� (end, true)

}
r := true;

} else {{
∃v. adjacent(x, v, z, e) ∗ cid� (ADD, e) ∧ (e < MAX)

}
linself;{
∃v. adjacent(x, v, y, e) ∗ cid� (end, false)

}
r := false;

}
unlock(x);{
I ∗ cid� (end, r)

}
return r;

Figure 43. Proof of Add in Lock-Coupling List (Thread cid)

E.6 Lock-Coupling List
Below we will verify the four fine-grained list-based set algorithms
in Herlihy and Shavit’s book [15]: lock-coupling list, optimistic list,
lazy list and lock-free list. In Figure 40(b) we define three abstract
set operations, ADD(e), RMV(e) and CTN(e), where the abstract
set S is simply represented by a mathematical set. These abstract
operations will serve as the specification for all the four list-based
set implementations.

In this section, we verify the lock-coupling list. Figure 40(a)
gives its concrete implementation. The abstract set is implemented
by an ordered singly-linked list pointed to by a shared variable
Head, with two sentinel nodes at the two ends of the list containing
the values MIN and MAX respectively. Each list node is associated
with a lock. Traversing the list uses “hand-over-hand” locking:
the lock on one node is not released until its successor is locked.
add(e) inserts a new node with value e in the appropriate position
while holding the lock of its predecessor. rmv(e) redirects the

rmv(e):
local x, y, z, v;{
I ∗ cid� (RMV, e) ∧ (MIN < e < MAX)

}
(x, y) := locate(e);{
∃u, v. adjacent(x, u, y, v) ∗ cid� (RMV, e)
∧ (u < e ≤ v) ∧ (e < MAX)

}
v := y.data;
if (v = e) {{
∃u. adjacent(x, u, y, e) ∗ cid� (RMV, e) ∧ (e < MAX)

}
lock(y);
z := y.next;{
∃u. adjacentLocked(x, u, y, e, z) ∗ cid�(RMV, e) ∧ (e<MAX)

}
< x.next := z; linself; >
unlock(x);{
I ∗ Lcid(y, e, z) ∗ cid� (end, true)

}
dispose(y);{
I ∗ cid� (end, true)

}
return true;

} else {{
∃u. adjacent(x, u, y, v) ∗ cid� (RMV, e) ∧ (u < e < v)

}
linself;{
∃u. adjacent(x, u, y, v) ∗ cid� (end, false)

}
unlock(x);{
I ∗ cid� (end, false)

}
return false;

}

Figure 44. Proof of Remove in Lock-Coupling List (Thread cid)

predecessor’s pointer while both the node to be removed and its
predecessor are locked. This implementation does not use helping
mechanism or future-dependent LPs.

The linearization point for a successful add is at line 17 in
Figure 40(a), where the new node is linked onto the list. Similarly,
the LP for a successful rmv is at line 29 where the node is unlinked
from the list. For unsuccessful add and rmv, the LPs could be at any
points when holding the corresponding locks. Here we let them be
the points just before releasing the locks at lines 22 and 34. At these
lineariztion points, we simply insert linself.

We define the precise invariant, the rely and the guarantee in
Figure 41, and show the proofs in Figures 42, 43 and 44, where we
highlight the instrumented auxiliary commands.

The invariant I in Figure 41 requires the concrete list should be
sorted and its elements constitute the abstract set S. Note that every
removed node can be explicitly disposed (line 31 in Figure 40)
in the lock-coupling list algorithm, since the thread locally owns
the node after removing it from the list. Thus we do not need an
auxiliary variable to remember those garbage nodes as in previous
examples.

The guarantee G defined in Figure 41 contains four actions:
locking a node (Lock), releasing the lock of a node (Unlock),
adding a node when holding the predecessor’s lock (Add), and re-
moving a node when holding both the predecessor’s and the node’s
locks (Rmv). Note that Add and Rmv update both the concrete list
and the abstract sets, which correspond to the linearization points.
For Rmv, the node disappears from the shared state after it is re-
moved. This means, the node is transferred from the shared mem-
ory to the thread’s local memory.

The verification which follows our rely-guarantee-style infer-
ence rules is not difficult, and we show the proofs in Figures 42, 43
and 44.

47 2013/4/20

struct Node {
int lock;
int data;
struct Node *next;

}
struct List {

struct Node *Head;
}

initialize(){
Head := cons(0, MIN, null);
Head.next := cons(0, MAX, null);

}

locate(e) : add(e) : rmv(e) :

local p, c, u;
1 p := Head;
2 lock(p);
3 c := p.next;
4 u := c.data;
5 while (u < e) {
6 lock(c);
7 unlock(p);
8 p := c;
9 c := p.next;

10 u := c.data;
11 }
12 return (p, c);

local x, y, z, u, r;
13 (x, z) := locate(e);
14 u := z.data;
15 if (u != e) {
16 y := cons(0, e, z);
17 x.next := y;
18 r := true;
19 } else {
20 r := false;
21 }
22 unlock(x);
23 return r;

local x, y, z, v;
24 (x, y) := Head;
25 v := y.data;
26 if (v = e) {
27 lock(y);
28 z := y.next;
29 x.next := z;
30 unlock(x);
31 dispose(y);
32 return true;
33 } else {
34 unlock(x);
35 return false;
36 }

(a) Implementation

θ ∈ {S} → Set(Int)

ADD(n)(θ)
def
=

{
(true, θ{S S ∪ {n}}) if θ(S) = S and n 6∈ S
(false, θ) otherwise

RMV(n)(θ)
def
=

{
(true, θ{S S}) if θ(S) = S] {n}
(false, θ) otherwise

CTN(n)(θ)
def
=

{
(true, θ) if n ∈ θ(S)
(false, θ) otherwise

(b) Abstract Operations

Figure 40. Lock-Coupling List-Based Set

I
def
= ∃A. ls(Head, A, null) ∗ s(A)

Ns(x, v, y)
def
= x 7→ (s, v, y) N(x, v, y)

def
= N (x, v, y) U(x, v, y)

def
= N0(x, v, y) Lt(x, v, y)

def
= N0(x, v, y) ∧ t > 0

ls(x,A, y)
def
= (x = y ∧A = ε) ∨ (x 6= y ∧ ∃z, v, A′. A = v ::A′ ∧ N(x, v, z) ∗ ls(z,A′, y))

sorted(A)
def
=

{
true if A = ε ∨A = v ::ε
(v1 < v2) ∧ sorted(v2 ::A′) if A = v1 ::v2 ::A′

elems(A)
def
=

{
∅ if A = ε
{v} ∪ elems(A′) if A = v ::A′

s(A)
def
= ∃B. (A = MIN ::B ::MAX) ∗ (S Z⇒ elems(B)) ∧ sorted(A)

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
= [Addt ∨ Rmvt ∨ Lockt ∨ Unlockt]I

Addt
def
= ∃x, y, z, n, u, v, w, S. (Lt(x, u, z) ∗ N(z, w, n) ∗ (S Z⇒ S) ∧ (u < v < w)) n (Lt(x, u, y) ∗ U(y, v, z) ∗ N(z, w, n) ∗ (S Z⇒ S ∪ {v}))

Rmvt
def
= ∃x, y, z, u, v, S. (Lt(x, u, y) ∗ Lt(y, v, z) ∗ (S Z⇒ S) ∧ (v < MAX)) n (Lt(x, u, z) ∗ (S Z⇒ S\{v}))

Lockt
def
= ∃x, v, y. U(x, v, y) n Lt(x, v, y) Unlockt

def
= ∃x, v, y. Lt(x, v, y) n U(x, v, y)

adjacent(p, v, c, u)
def
= ∃A,B, z. ls(Head, A, p) ∗ Lcid(p, v, c) ∗ N(c, u, z) ∗ ls(z,B, null) ∗ s(A ::v ::u ::B)

adjacentLocked(x, v, y, u, z)
def
= ∃A,B. ls(Head, A, p) ∗ Lcid(x, v, y) ∗ Lcid(y, u, z) ∗ ls(z,B, null) ∗ s(A ::v ::u ::B)

Figure 41. Precise Invariant, Rely and Guarantee of Lock-Coupling List (for Thread t)

48 2013/4/20

E.7 Optimistic List
Next, we verify the optimistic list in Herlihy and Shavit’s book [15].

As shown in Figure 45, this implementation traverses the list
without taking any locks, and when finding the candidate nodes,
it locks the nodes and validates that they are still in the list and
adjacent. If the validation fails, the nodes are unlocked and the
operation is restarted.

The linearization points are the same as in the lock-coupling list
algorithm, where we insert linself as usual. We define the precise
invariant, the rely and the guarantee in Figure 46, and show the
proofs in Figures 47 and 48.

As for the lock-coupling list, the invariant I defined in Figure 46
requires the concrete list to be sorted and its elements to constitute
the abstract set S. Since the optimistic algorithm ignores the locks
when traversing the list, it may access nodes that have been re-
moved from the list. Thus we cannot dispose removed nodes as in
the lock-coupling list. Instead, we need to introduce a write-only
auxiliary variable GN to remember those removed nodes. The pre-
cise invariant I should include those nodes (garb).

The guarantee G in Figure 46 still contains the Lock, Unlock,
Add and Rmv actions. Their definitions are almost the same as in
the lock-coupling list (Figure 41), except that after the Rmv action,
the removed node is still shared and we just add it to GN.

We give the proofs for the rmv and ctn methods in Figures 47
and 48 respectively. The proof for the add method is similar. The
tricky and the most important part is to verify the validate func-
tion (the proof is shown in Figure 48). This function takes two
locked nodes, and re-traverses the list and checks whether they are
still in the list and adjacent. But in this traversal, it may access the
nodes which have been removed by a concurrent rmv method. This
does not matter, because:

1. In the algorithm, once a node has been unlinked from the list,
the value of its next field does not change, thus following the
links from the removed node eventually leads back to the list.

2. Any removed node encountered in this traversal must be un-
linked from the list after the validate method started. Thus
these removed nodes should be disjoint from both the list and
the two locked nodes for validation, even if the two locked
nodes have been removed.

Based on the above two observations, we can have the following
assertion in the loop invariant in the validate method:

Lt(p, u,) ∗ Lt(c, v,) ∗ ls(Head, , x) ∗ ls(s, , x) ∗ true

where p and c are the two locked nodes for validation, and s is the
current node in the traversal. The validate function first checks
whether p equals c. If so, then we know s must be equal to x in
the above assertion. Thus p must be on the list. If p is also the
predecessor of c, validate returns true.

49 2013/4/20

add(e) : rmv(e) : ctn(e) :

local p, c, n;
1 while (true) {
2 p := Head;
3 c := p.next;
4 while (c.data < e) {
5 p := c;
6 c := c.next;
7 }
8 lock(p);
9 lock(c);

10 if (validate(p, c)) {
11 if (c.data != e) {
12 n := cons(0, e, c);
13 p.next := n;
20 unlock(p);
21 unlock(c);
22 return true;
23 }
24 else {
25 unlock(p);
26 unlock(c);
27 return false;
28 }
29 }
30 unlock(p);
31 unlock(c);
32 }

local p, c, n;
1 while (true) {
2 p := Head;
3 c := p.next;
4 while (c.data < e) {
5 p := c;
6 c := c.next;
7 }
8 lock(p);
9 lock(c);

10 if (validate(p, c)) {
11 if (c.data = e) {
12 n := c.next;
13 p.next := n;
20 unlock(p);
21 unlock(c);
22 return true;
23 }
24 else {
25 unlock(p);
26 unlock(c);
27 return false;
28 }
29 }
30 unlock(p);
31 unlock(c);
32 }

local p, c, n;
1 while (true) {
2 p := Head;
3 c := p.next;
4 while (c.data < e) {
5 p := c;
6 c := c.next;
7 }
8 lock(p);
9 lock(c);

10 if (validate(p, c)) {
20 unlock(p);
21 unlock(c);
22 return (c.data = e);
23 }
30 unlock(p);
31 unlock(c);
32 }

validate(p, c):
local s;
s := Head;
while (s.data <= p.data) {

if (s = p)
return (p.next = c);

s := s.next;
}
return false;

Implementation (from Herlihy & Shavit’s book)

Figure 45. Optimistic List

I
def
= ∃A. ls(Head, A, null) ∗ s(A) ∗ garb

Ns(x, v, y)
def
= x 7→ (s, v, y) N(x, v, y)

def
= N (x, v, y) U(x, v, y)

def
= N0(x, v, y) Lt(x, v, y)

def
= N0(x, v, y) ∧ t > 0

ls(x,A, y)
def
= (x = y ∧A = ε) ∨ (x 6= y ∧ ∃z, v, A′. A = v ::A′ ∧ N(x, v, z) ∗ ls(z,A′, y))

sorted(A)
def
=

{
true if A = ε ∨A = v ::ε
(v1 < v2) ∧ sorted(v2 ::A′) if A = v1 ::v2 ::A′

elems(A)
def
=

{
∅ if A = ε
{v} ∪ elems(A′) if A = v ::A′

s(A)
def
= ∃B. (A = MIN ::B ::MAX) ∗ (S Z⇒ elems(B)) ∧ sorted(A) garb

def
= ~x∈GN.N(x, ,)

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
= [Addt ∨ Rmvt ∨ Lockt ∨ Unlockt]I

Addt
def
= ∃x, y, z, n, u, v, w, S. (Lt(x, u, z) ∗ N(z, w, n) ∗ (S Z⇒ S) ∧ (u < v < w)) n (Lt(x, u, y) ∗ U(y, v, z) ∗ N(z, w, n) ∗ (S Z⇒ S ∪ {v}))

Rmvt
def
= ∃x, y, z, u, v, Sg , S. (Lt(x, u, y) ∗ Lt(y, v, z) ∗ (GN = Sg) ∗ (S Z⇒ S) ∧ (v < MAX))

n (Lt(x, u, z) ∗ Lt(y, v, z) ∗ (GN = Sg ∪ {y}) ∗ (S Z⇒ S\{v}))
Lockt

def
= ∃x, v, y. U(x, v, y) n Lt(x, v, y) Unlockt

def
= ∃x, v, y. Lt(x, v, y) n U(x, v, y)

Figure 46. Precise Invariant, Rely and Guarantee of Optimistic List (for Thread t)

50 2013/4/20

IntSet GN; //Auxiliary global variable for verification: removed nodes

rmv(e):
local p, c, n;
{I ∗ t� (RMV, e) ∧ (MIN < e < MAX)}
while (true) {

p := Head;
c := p.next;
while (c.data < e) {

p := c;
c := c.next;

}
lock(p);
lock(c);
{∃u, v. (I ∧ Lt(p, u,) ∗ Lt(c, v,) ∗ true) ∗ t� (RMV, e) ∧ (u < e ≤ v)}
if (validate(p, c)) {
{∃u, v. (I ∧ ls(Head, , p) ∗ Lt(p, u, c) ∗ Lt(c, v,) ∗ true) ∗ t� (RMV, e) ∧ (u < e ≤ v)}
if (c.data = e) {

n := c.next;
{∃u. (I ∧ ls(Head, , p) ∗ Lt(p, u, c) ∗ Lt(c, e, n) ∗ true) ∗ t� (RMV, e)}
< p.next := n; GN := GN ∪ {c}; linself; >

{∃u. (I ∧ ls(Head, , p) ∗ Lt(p, u, n) ∗ Lt(c, e, n) ∗ true) ∗ t� (end, true)}
unlock(p);
unlock(c);
{I ∗ t� (end, true)}
return true;

}
else {
{∃u, v. (I ∧ ls(Head, , p) ∗ Lt(p, u, c) ∗ Lt(c, v,) ∗ true) ∗ t� (RMV, e) ∧ (u < e < v)}
linself;

{∃u, v. (I ∧ ls(Head, , p) ∗ Lt(p, u, c) ∗ Lt(c, v,) ∗ true) ∗ t� (end, false) ∧ (u < e < v)}
unlock(p);
unlock(c);
{I ∗ t� (end, false)}
return false;

}
}
{∃u, v. (I ∧ Lt(p, u,) ∗ Lt(c, v,) ∗ true) ∗ t� (RMV, e) ∧ (u < e ≤ v)}
unlock(p);
unlock(c);

}

Figure 47. Proof Outline of Remove of Optimistic List for Thread t

51 2013/4/20

ctn(e):
local p, c, n;
{I ∗ t� (CTN, e) ∧ (MIN < e < MAX)}
while (true) {

p := Head;
c := p.next;
{∃u, x. (I ∧ N(p, u,) ∗ ls(c, , x) ∗ N(x, MAX, null) ∗ true) ∗ t� (CTN, e) ∧ (u < e < MAX)}
while (c.data < e) {
{∃u, v, x, y. (I ∧ N(p, u,) ∗ N(c, v, x) ∗ ls(x, , y) ∗ N(y, MAX, null) ∗ true) ∗ t� (CTN, e) ∧ (v < e < MAX)}
p := c;
c := c.next;

}
{∃u, v. (I ∧ N(p, u,) ∗ N(c, v,) ∗ true) ∗ t� (CTN, e) ∧ (u < e ≤ v)}
lock(p);
lock(c);
{∃u, v. (I ∧ Lt(p, u,) ∗ Lt(c, v,) ∗ true) ∗ t� (CTN, e) ∧ (u < e ≤ v)}
if (validate(p, c)) {
{∃u, v. (I ∧ ls(Head, , p) ∗ Lt(p, u, c) ∗ Lt(c, v,) ∗ true) ∗ t� (CTN, e) ∧ (u < e ≤ v)}
linself;

{∃u, v. (I ∧ ls(Head, , p) ∗ Lt(p, u, c) ∗ Lt(c, v,) ∗ true) ∗ ((e = v ∧ t� (end, true)) ∨ (e 6= v ∧ t� (end, false))) ∧ (u < e ≤ v)}
unlock(p);
unlock(c);
{∃v. (I ∧ N(c, v,) ∗ true) ∗ ((e = v ∧ t� (end, true)) ∨ (e 6= v ∧ t� (end, false)))}
return (c.data = e);

}
{∃u, v. (I ∧ Lt(p, u,) ∗ Lt(c, v,) ∗ true) ∗ t� (CTN, e) ∧ (u < e ≤ v)}
unlock(p);
unlock(c);

}

validate(p, c):
local s;
{I ∧ Lt(p, u,) ∗ Lt(c, v,) ∗ true ∧ u < v}
s := Head;
{I ∧ ∃w, x. Lt(p, u,) ∗ Lt(c, v,) ∗ ls(Head, , x) ∗ ls(s, , x) ∗ true ∧ N(s, w,) ∗ true ∧ u < v}
while (s.data <= p.data) {
{I ∧ ∃w, x, y. Lt(p, u,) ∗ Lt(c, v,) ∗ ls(Head, , x) ∗ ls(s, , x) ∗ true ∧ N(s, w, y) ∗ N(y, ,) ∗ true ∧ w ≤ u < v}
if (s = p)
{I ∧ ls(Head, , p) ∗ Lt(p, u,) ∗ Lt(c, v,) ∗ true ∧ u < v}
return (p.next = c);{
I ∧ ∃w, y. Lt(p, u,) ∗ Lt(c, v,) ∗ ls(Head, , s) ∗ N(s, w, y) ∗ true ∧ N(y, ,) ∗ true ∧ w ≤ u < v
∨ I ∧ ∃w, x, y. Lt(p, u,) ∗ Lt(c, v,) ∗ ls(Head, , x) ∗ N(s, w, y) ∗ ls(y, , x) ∗ true ∧ N(y, ,) ∗ true ∧ w ≤ u < v

}
s := s.next;

}
{I ∧ Lt(p, u,) ∗ Lt(c, v,) ∗ true ∧ u < v}
return false;

Figure 48. Proof Outline of Contains and Validate of Optimistic List for Thread t

52 2013/4/20

E.8 Lazy List
The lazy list algorithm [13] has a wait-free ctn method. As shown
in Figure 49, every node in the concrete list has a mark field. The
rmv(e) method first logically removes the node by setting its mark
field before the physical removal (unlinking it from the list). The
ctn(e) method traverses the list once ignoring the locks on the
nodes, and returns true if it can find an unmarked e, and false
otherwise.

Linearization points. The linearization points of add and rmv can
be statically located in the method code. Just note that a successful
rmv is linearized when the node is logically removed.

A successful ctn is linearized when an unmarked matching
node is found. However, the LP of an unsuccessful ctn might de-
pend on the future interleavings with the sibling threads. Following
Vafeiadis [31], we can linearize the read-only ctn(e) method mul-
tiple times according to the following principles:

1. At the beginning of its execution, we linearize the method if e
is not in the list.

2. Whenever some sibling thread removes e from the list, we
linearize the pending ctn(e) method if it has not reached the
linearization point for successful searching (in 3).

3. When e is successfully found, we linearize ctn(e).

The first two principles include all the scenarios when ctn(e)
returns false, which ensure that at any time in its executions, if the
method has not been linearized, then e must be in the set.

To help specify the linearization points for ctn, we use a global
auxiliary variable OutOps, a set containing the information of all
the pending ctn operations. We introduce auxiliary code in the ctn
and rmv methods, as shown by the red-colored code in Figures 51
and 52. At the beginning of ctn, we allocate the thread record and
add it to OutOps. A thread record contains the thread identifier t,
the argument e, and a field res to record the current status (which
is UNDEF initially, and false when the method has been linearized).
Then according to the above three principles, we set the res field
to false at the beginning of the ctn if e is not in the list. Also
rmv(e) will set the field at the time when e is logically removed.
We will delete the thread record from OutOps at the last possible
linearization point of ctn, i.e., the LP for successful searching.

Then, as shown in the highlighted code in Figures 51 and 52,
we insert trylinself and trylin at potential LPs in the ctn and rmv
methods, and commit at the time when we know the return value of
the ctn method. Note we can insert linself at the LP for successful
ctns, since this is a LP for sure.

Although we introduce the global auxiliary variable OutOps,
our verification is still thread-local. We treat OutOps as a normal
shared variable, and specify it in pre- and post-conditions and
rely/guarantee conditions. We do not need to know the number of
threads and which method is invoked by which thread.

Invariant, rely and guarantee. We define the precise invariant,
the rely and the guarantee in Figure 50. As in the optimistic list,
the invariant I contains the concrete list and the abstract set, and
also the removed nodes (garb) specified by the auxiliary variable
GN. The values of unmarked nodes on the list constitute the abstract
set S. In addition, I also contains the thread descriptors in OutOps
and the corresponding abstract operations. The res field of a thread
descriptor tells us the abstract operation of that thread, as defined
in D(d, t, n). If res of the descriptor d is UNDEF, then the thread
t must have not done its (CTN, n) operation; otherwise, the thread
has passed its potential LP and we can guess its abstract operation
is the original (CTN, n) or (end, false).

The atomic actions of the algorithm include locking a node
(Lock), releasing a lock (Unlock), adding a node (Add), physically

removing a marked node (Rmv), marking a node of value v and
setting the res fields of the thread records in OutOps for the
threads who are searching for v (Mark), adding the record of
the current thread to OutOps (AddOut) and removing its record
(RmvOut). Note that when defining Mark, we can use ∗ to separate
the actions on the mark field of the node and on the res fields
of descriptors, which are simultaneous. The latter is specified by
the action TrylinOut. All these actions form the guarantee G of a
thread, and the rely R is the union of the actions made by all the
other threads.

Proofs. We show the verification of the ctn and rmv methods in
Figures 51 and 52. The proofs are straightforward, following our
inference rules.

53 2013/4/20

struct Node{ int lock; int val; Node *next; bool mark; };

locate(e) :
local p, c;

1 while (true) {
2 p := Head;
3 c := p.next;
4 while (c.val < e) {
5 p := c;
6 c := c.next;
7 }
8 lock(p);
9 lock(c);

10 if (!p.mark && !c.mark
11 && p.next = c)
12 return (p, c);
13 else {
14 unlock(p);
15 unlock(c);
16 }
17 }

add(e) :
local p, c, n, r;

18 (p, c) := locate(e);
19 if (c.val != e) {
20 n := cons(0, e, c, false);
21 p.next := n;
22 r := true;
23 }
24 else {
25 r := false;
26 }
27 unlock(p);
28 unlock(c);
29 return r;

rmv(e) :
local p, c, n, r;

30 (p, c) := locate(e);
31 if (c.val = e) {
32 c.mark := true;
33 n := c.next;
34 p.next := n;
35 r := true;
36 }
37 else {
38 r := false;
39 }
40 unlock(p);
41 unlock(c);
42 return r;

ctn(e) :
local c;

43 c := Head;
44 while (c.val < e) {
45 c := c.next;
46 }
47 b := c.mark;
48 if (!b && c.val = e)
49 return true;
50 else
51 return false;

Figure 49. Lazy List

54 2013/4/20

I
def
= ∃A. ls(Head, A, null) ∗ s(A) ∗ Ds(OutOps) ∗ garb

N(x, v, y, b)
def
= x 7→ (, v, y, b) Lt(x, v, y, b)

def
= x 7→ (t, v, y, b) ∧ (t > 0) U(x, v, y, b)

def
= x 7→ (0, v, y, b)

ls(x,A, z)
def
= (x = z ∧A = ε) ∨ (x 6= z ∧ ∃v, y, b, A′. N(x, v, y, b) ∗ ls(y,A′, z) ∧A = (v, b) ::A′)

sorted(A)
def
=

{
true if A = ε ∨A = (v, b) ::ε
(v1 < v2) ∧ sorted((v2, b2) ::A′) if A = (v1, b1) :: (v2, b2) ::A′

elems(A)
def
=

 ∅ if A = ε
{v} ∪ elems(A′) if A = (v, false) ::A′

elems(A′) if A = (v, true) ::A′

s(A)
def
= ∃A′. (A = (MIN, false) ::A′ :: (MAX, false)) ∧ sorted(A) ∧ (S Z⇒ elems(A′)) garb

def
= ~x∈GN.N(x, , ,)

d(d, t, n, b)
def
= d 7→ (t, n, b) ∧ (b = UNDEF ∨ b = false)

notDone(d, t, n)
def
= d(d, t, n, UNDEF) ∗ t� (CTN, n)

afterTrylin(d, t, n)
def
= d(d, t, n, false) ∗ (t� (CTN, n)⊕ t� (end, false))

D(d, t, n)
def
= notDone(d, t, n) ∨ afterTrylin(d, t, n) Ds(O)

def
= ~d∈O.D(d, ,)

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
= [Lockt ∨ Unlockt ∨ Addt ∨Markt ∨ Rmvt ∨ AddOutt ∨ RmvOutt]I

Lockt
def
= ∃x, v, y, b. U(x, v, y, b) n Lt(x, v, y, b) Unlock(t)

def
= ∃x, v, y, b. Lt(x, v, y, b) n U(x, v, y, b)

Addt
def
= ∃x, y, z, p, u, v, w, S. (Lt(x, u, y, false) ∗ Lt(y, w, z, false) ∗ (S Z⇒ S) ∧ (u < v < w))

n (Lt(x, u, p, false) ∗ U(p, v, y, false) ∗ Lt(y, w, z, false) ∗ (S Z⇒ S ∪ {v}))
Markt

def
= ∃y, z, v, S,O. ((Lt(y, v, z, false) ∗ (S Z⇒ S ∪ {v}) ∧ (v < MAX)) n (Lt(y, v, z, true) ∗ (S Z⇒ S))) ∗ TrylinOut(v,O)

TrylinOut(O, v)
def
= ~d∈O.(∃t. D(d, t, v) n afterTrylin(d, t, v)) provided ∃O′. (OutOps = O]O′) ∧ ∀d ∈ O′. ∃n. (n 6= v) ∧ D(d, , n)

Rmvt
def
= ∃x, y, z, u, v, Sg . (Lt(x, u, y, false) ∗ Lt(y, v, z, true) ∗ (GN = Sg) ∧ (v < MAX)) n (Lt(x, u, z, false) ∗ Lt(y, v, z, true) ∗ (GN = Sg ∪ {y}))

AddOutt
def
= ∃O, d. (OutOps = O) n ((OutOps = O] {d}) ∗ D(d, t,))

RmvOutt
def
= ∃O, d. ((OutOps = O] {d}) ∗ D(d, t,)) n (OutOps = O)

Figure 50. Precise Invariant, Rely and Guarantee of Lazy List (for Thread t)

55 2013/4/20

Always ∗garb

IntSet OutOps; //Auxiliary global variable for verification: thread descriptors for contains

ctn(e):
local c, b, d, ac;
{∃A. ls(Head, A, null) ∗ s(A) ∗ Ds(OutOps) ∗ t� (CTN, e)}
< d := cons(t, e, UNDEF);
ac := Head; while(ac.val < e) ac := ac.next;
if (ac.mark || ac.val!=e) { d.res:= false; trylinself; }
OutOps := OutOps∪{d}; >
∃O. OutOps = O] {d}
∧((∃A,B, x, y. ls(Head, A, x) ∗ N(x, e, y, false) ∗ ls(y,B, null)
∗ Ds(O) ∗ notDone(d, t, e) ∗ s(A :: (e, false) ::B))
∨(∃A.ls(Head, A, null) ∗ Ds(O) ∗ afterTrylin(d, t, e) ∗ s(A)))

c := Head;
∃O. OutOps = O] {d}
∧((∃A,A′, B, x, y. ls(Head, A, c) ∗ ls(c, A′, x) ∗ N(x, e, y, false)
∗ ls(y,B, null) ∗ Ds(O) ∗ notDone(d, t, e) ∗ s(A ::A′ :: (e, false) ::B))
∨(∃A,B, y, v, b. ls(Head, A, c) ∗ N(c, v, y, b) ∗ ls(y,B, null)
∗ Ds(O) ∗ afterTrylin(d, t, e) ∗ s(A :: (v, b) ::B)))

while (c.val < e) { c := c.next; }
∃O. OutOps = O] {d}
∧((∃A,B, y. ls(Head, A, c) ∗ N(c, e, y, false) ∗ ls(y,B, null)
∗ Ds(O) ∗ notDone(d, t, e) ∗ s(A :: (e, false) ::B))
∨(∃A,B, y, v, b. ls(Head, A, c) ∗ N(c, v, y, b) ∗ ls(y,B, null)
∗ Ds(O) ∗ afterTrylin(d, t, e) ∗ s(A :: (v, b) ::B) ∧ v ≥ e))

< b := c.mark;
if (!b && c.val=e) { linself; commit(t� (end, true)); } else { commit(t� (end, false)); }
OutOps := OutOps\{d}; dispose(d); >∃A,B, v, y. ls(Head, A, c) ∗ N(c, v, y, b) ∗ ls(y,B, null)
∗((t�(end, true) ∧ ¬b ∧ v = e) ∨ (t�(end, false) ∧ (b ∨ v > e)))
∗ D(OutOps) ∗ s(A :: (v, b) ::B)

if (!b && c.val=e){
∃A. ls(Head, A, null) ∗ s(A) ∗ Ds(OutOps) ∗ (t�(end, true))

}
return true;

else{
∃A. ls(Head, A, null) ∗ s(A) ∗ Ds(OutOps) ∗ (t�(end, false))

}
return false;

Figure 51. Proof Outline of Contains of Lazy List for Thread t

56 2013/4/20

adjacentLocked(x, v, y, u, z, b, b′)
def
= ∃A,B. ls(Head, A, x) ∗ Lt(x, v, y, b) ∗ Lt(y, u, z, b′) ∗ ls(z,B, null) ∗ s(A :: (v, b) :: (u, b′) ::B)

IntSet GN; //Auxiliary global variable for verification: removed nodes

rmv(e):
local p, c, n, r, d;
{I ∗ t� (RMV, e) ∧ (e < MAX)}
(p, c) := locate(e);{
∃u, v. adjacentLocked(p, u, c, v, , false, false) ∗ Ds(OutOps) ∗ t� (RMV, e) ∗ garb ∧ (u < e ≤ v) ∧ (e < MAX)

}
if (c.val = e) {{
∃u. adjacentLocked(p, u, c, e, , false, false) ∗ Ds(OutOps) ∗ t� (RMV, e) ∗ garb ∧ (e < MAX)

}
< c.mark := true; linself;
foreach d in OutOps
if (d.arg = e) { d.res:= false; trylin(d.id); } >{

∃u. adjacentLocked(p, u, c, e, , false, true) ∗ Ds(OutOps) ∗ t� (end, true) ∗ garb ∧ (e < MAX)
}

n := c.next;
< p.next := n; GN := GN ∪ {c}; >{
∃A,B, u. ls(Head, A, p) ∗ Lt(p, u, n, false) ∗ ls(n, B, null) ∗ Ds(OutOps)
∗ t� (end, true) ∗ s(A :: (u, false) ::B) ∗ garb

}
r := true;

}
else {{
∃u, v. adjacentLocked(p, u, c, v, , false, false) ∗ Ds(OutOps) ∗ t� (RMV, e) ∗ garb ∧ (u < e < v)

}
linself;{
∃u, v. adjacentLocked(p, u, c, v, , false, false) ∗ Ds(OutOps) ∗ t� (end, false) ∗ garb

}
r := false;

}
unlock(p);
unlock(c);
{I ∗ t� (end, r)}
return r;

Figure 52. Proof Outline of Remove of Lazy List for Thread t

57 2013/4/20

E.9 Lock-Free List
The last list-based set algorithm is the classical Harris-Michael list
algorithm [11, 21]. We show a variation in Figure 53, which is is
taken from Herlihy and Shavit’s book [15], and has been corrected
according to its errata.

The algorithm does not use locks, but takes full advantage of
the mark field of the list node. To avoid missing the effects of add
or rmv operations, we need to ensure that a node’s field cannot be
updated if the node has been logically or physically removed. Thus
the algorithm uses a new style of cas:

cas(&(p.(next, mark)), o, n, b, b’)

It updates p.next and p.mark atomically to n and b’, if they are
originally o and b respectively. The following command allows
reading p.next and p.mark atomically:

(n, b) := p.(next, mark);

In other words, we treat the node’s next and mark fields as a single
atomic unit. Then in the algorithm, we update the next field only
when the mark field is true.

An idea of the algorithm is to let every thread doing add or rmv
physically remove all marked nodes it encounters, before doing its
own operation. This is a “helping mechanism”, although it does not
affect the location of linearization points (since the LP of a rmv is
at the time of marking the node, rather than physically removal).
For ctn, the version we verified in this paper uses the same code of
lazy list, thus differs from Harris’ or Michael’s original version. In
Harris’ or Michael’s version, the ctn method will call the locate
function, thus also helps physically remove the marked nodes. Both
versions have benefits and drawbacks in different situations. For
verification, the difference is reflected in the location of the lin-
earization point for unsuccessful contains. In Harris’ or Michael’s
version, its LPs can be located in the thread currently being verified;
while in Herlihy and Shavit’s version we verified, the LP might be
in other threads and depend on future, just like the lazy list.

We define the precise invariant, the rely and the guarantee in
Figure 54. The definitions are similar to those for the lazy list 50.
We only want to emphasize the definitions for the Add, Mark
and Rmv actions, which all require the predecessor node to be
unmarked before the actions.

We show the proofs for the add and rmv methods in Figures 55
and 56 respectively. Proof for the ctn method is the same as the
lazy list. Below we mainly explain the verification of add. It is
similar for rmv.

As usual, the linearization point for a successful add is at the
time when the new node is linked to the list, i.e., at line 22 for a
successful cas in Figure 53. Thus, we insert linself at that line,
as shown in Figure 55. But for an unsuccessful add, the LP is
not static, whose location may depend on future behaviors. This
is because when the add thread traverses the list, other threads
could concurrently access the list. Thus even when add found the
node was in the list in its traversal, its environment may have
removed the node at the time when add returns false. But when
add just read the node it is looking for in its traversal (such as at
line 3 in Figure 53), the thread does not know whether the node
would become marked or not when it reads its mark field (such
as at line 5). Moreover, if the node is marked and also has been
physically removed, the thread will restart the traversal, and the
guessed LPs are all obsolete.

Thus in Figure 55, we insert trylinself at every first read of
a node (i.e., getting a pointer pointing to the node). We do not
lose any chance when the current abstract set contains the node
and from that point the concrete execution could return false in
the future. We commit the original ADD operation when we are
sure that we will restart or continue searching, and commit the

(end, false) operation when we will return false. These auxiliary
commands are highlighted in Figure 55. The proofs simply follow
our inference rules. The main complexity is to distinguish whether
a node currently visited is on list, or marked, or has been physically
removed.

58 2013/4/20

struct Node{ int val; Node *next; bool mark; };

locate(e) :
local p, c, n, m, s;

1 while (true) {
2 p := Head;
3 c := p.next;
4 while (true) {
5 (n, m) := c.(next, mark);
6 while (m) {
7 s := cas(&(p.(next, mark)), c, n, false, false);
8 if (!s) continue line 1;
9 c := n;

10 (n, m) := c.(next, mark);
11 }
12 if (c.val >= e)
13 return (p, c);
14 p := c;
15 c := n;
16 }
17 }

add(e) :
local p, c, n;

18 while (true) {
19 (p, c) := locate(e);
20 if (c.val != e) {
21 n := cons(e, c, false);
22 if (cas(&(p.(next, mark)), c, n, false, false))
23 return true;
24 } else {
25 return false;
26 }
27 }

rmv(e) :
local p, c, n, s;

28 while (true) {
29 (p, c) := locate(e);
30 if (c.val = e) {
31 n := c.next;
32 s := cas(&(c.(next, mark)), n, n, false, true);
33 if (!s)
34 continue;
35 cas(&(p.(next, mark)), c, n, false, false);
36 return true;
37 } else {
38 return false;
39 }
40 }

ctn(e) :
local c;

41 c := Head;
42 while (c.val < e) {
43 c := c.next;
44 }
45 b := c.mark;
46 if (!b && c.val = e)
47 return true;
48 else
49 return false;

Implementation (Based on Herlihy and Shavit’s Book and Errata)

Figure 53. Harris-Michael Lock-Free List

59 2013/4/20

I
def
= ∃A. ls(Head, A, null) ∗ s(A) ∗ Ds(OutOps) ∗ garb

N(x, v, y, b)
def
= x 7→ (v, y, b) M(x, v, y)

def
= N(x, v, y, true) U(x, v, y)

def
= N(x, v, y, false)

ls(x,A, z)
def
= (x = z ∧A = ε) ∨ (x 6= z ∧ ∃v, y, b, A′. N(x, v, y, b) ∗ ls(y,A′, z) ∧A = (v, b) ::A′)

sorted(A)
def
=

{
true if A = ε ∨A = (v, b) ::ε
(v1 < v2) ∧ sorted((v2, b2) ::A′) if A = (v1, b1) :: (v2, b2) ::A′

elems(A)
def
=

 ∅ if A = ε
{v} ∪ elems(A′) if A = (v, false) ::A′

elems(A′) if A = (v, true) ::A′

s(A)
def
= ∃A′. (A = (MIN, false) ::A′ :: (MAX, false)) ∧ sorted(A) ∧ (S Z⇒ elems(A′)) garb

def
= ~x∈GN.M(x, ,)

d(d, t, n, b)
def
= d 7→ (t, n, b) ∧ (b = UNDEF ∨ b = false)

notDone(d, t, n)
def
= d(d, t, n, UNDEF) ∗ t� (CTN, n)

afterTrylin(d, t, n)
def
= d(d, t, n, false) ∗ (t� (CTN, n)⊕ t� (end, false))

D(d, t, n)
def
= notDone(d, t, n) ∨ afterTrylin(d, t, n) Ds(O)

def
= ~d∈O.D(d, ,)

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
= [Add ∨Mark ∨ Rmv ∨ AddOutt ∨ RmvOutt]I

Add
def
= ∃x, y, z, p, u, v, w, b, S. (U(x, u, y) ∗ N(y, w, z, b) ∗ (S Z⇒ S) ∧ (u < v < w))

n (U(x, u, p) ∗ U(p, v, y) ∗ N(y, w, z, b) ∗ (S Z⇒ S ∪ {v}))
TrylinOut(O, v)

def
= ~d∈O.(∃t. D(d, t, v) n afterTrylin(d, t, v)) provided ∃O′. (OutOps = O]O′) ∧ ∀d ∈ O′. ∃n. (n 6= v) ∧ D(d, , n)

Mark
def
= ∃y, z, v, S,O. ((U(y, v, z) ∗ (S Z⇒ S ∪ {v}) ∧ (v < MAX)) n (M(y, v, z) ∗ (S Z⇒ S))) ∗ TrylinOut(v,O)

Rmv
def
= ∃x, y, z, u, v, Sg . (U(x, u, y) ∗M(y, v, z) ∗ (GN = Sg) ∧ (v < MAX)) n (U(x, u, z) ∗M(y, v, z) ∗ (GN = Sg ∪ {y}))

AddOutt
def
= ∃O, d. (OutOps = O) n ((OutOps = O] {d}) ∗ D(d, t,))

RmvOutt
def
= ∃O, d. ((OutOps = O] {d}) ∗ D(d, t,)) n (OutOps = O)

addMaynotin
def
= t� (ADD, e)

addMayin
def
= t� (ADD, e)⊕ t� (end, false)

rmvMayin
def
= t� (RMV, e)

rmvMaynotin
def
= t� (RMV, e)⊕ t� (end, false)

bound(p, e)
def
= ∃u. (I ∧ N(p, u, ,) ∗ true) ∗ true ∧ (u < e < MAX)

nodes2(c, v, n, v′)
def
= (onlist2(c, v, n, v′) ∨ (onlist(c, v) ∧ notonlist(n)) ∨ (notonlist(c) ∧ onlist(n, v′)) ∨ (notonlist(c) ∧ notonlist(n))) ∧ v < v′

onlist(c, v)
def
= ∃x, b, A,B. ls(Head, A, c) ∗ N(c, v, x, b) ∗ ls(x,B, null) ∗ s(A :: (v, b) ::B) ∗ Ds(OutOps) ∗ garb

onlistm(c, v, n, v′)
def
= ∃x, b, A,B. ls(Head, A, c) ∗M(c, v, n) ∗ N(n, v′, x, b) ∗ ls(x,B, null) ∗ s(A :: (v, true) :: (v′, b) ::B) ∗ Ds(OutOps) ∗ garb

onlist2(c, v, n, v′)
def
=

∃x, y,A,B,C. ls(Head, A, c) ∗ N(c, v, x, b) ∗ ls(x,B, n) ∗ N(n, v′, y, b′) ∗ ls(y, C, null) ∗ s(A :: (v, b) ::B :: (v′, b′) ::C) ∗ Ds(OutOps) ∗ garb

onlistmax(c, n)
def
= ∃x,A. ls(Head, A, c) ∗ U(c, MAX, null) ∗ (n = null) ∗ s(A :: (MAX, false)) ∗ Ds(OutOps) ∗ garb

notonlist(c)
def
= I ∧ (c ∈ GN)

Figure 54. Precise Invariant, Rely and Guarantee of Lock-Free List (for Thread t)

60 2013/4/20

add(e):
local p, c, n, m, s;
{I ∗ t� (ADD, e) ∧ (MIN < e < MAX)}
while (true) {

retry: p := Head;
< c := p.next;

if (e = c.val && !c.mark) trylinself; >

{∃v. (onlist(c, v) ∨ notonlist(c)) ∗ ((e 6= v ∧ addMaynotin) ∨ (e = v ∧ addMayin)) ∧ bound(p, e)}
while (true) {

< (n, m) := c.(next, mark);
if (!m && n != null && e = n.val && !n.mark) trylinself; > m ∧ ∃v, v′. (onlistm(c, v, n, v′) ∨ notonlist(c, v)) ∗ ((e 6= v ∧ addMaynotin) ∨ (e = v ∧ addMayin)) ∧ bound(p, e)
∨ ¬m ∧ onlistmax(c, n) ∗ addMaynotin ∧ bound(p, e)
∨ ¬m ∧ ∃v, v′. nodes2(c, v, n, v′) ∗ (((e 6= v ∨ e 6= v′) ∧ addMaynotin) ∨ ((v = e ∨ e = v′) ∧ addMayin)) ∧ bound(p, e)

while (m) {
{∃v, v′. (onlistm(c, v, n, v′) ∨ notonlist(c, v)) ∗ ((e 6= v ∧ addMaynotin) ∨ (e = v ∧ addMayin)) ∧ bound(p, e)}
< s := cas(&(p.(next, mark)), c, n, false, false); if (s) GN := GN ∪ {c};

if (s && e = c.val) commit(t� (ADD, e)); if (s && e = n.val) trylinself; >{
s ∧ ∃v′. (onlist(n, v′) ∨ notonlist(n)) ∗ ((e 6= v′ ∧ addMaynotin) ∨ (e = v′ ∧ addMayin)) ∧ bound(p, e)
∨ ¬s ∧ I ∗ (addMayin ∨ addMaynotin) ∧ (e < MAX)

}
if (!s) {

commit(t� (ADD, e));
{I ∗ t� (ADD, e) ∧ (e < MAX)}
continue retry;

}
c := n;
< (n, m) := c.(next, mark);

if (!m && n != null && e = n.val && !n.mark) trylinself; >
}
if (c.val >= e)

break;
{∃v, v′. nodes2(c, v, n, v′) ∗ ((e 6= v′ ∧ addMaynotin) ∨ (e = v′ ∧ addMayin)) ∧ bound(c, e)}
p := c;
c := n;

}{
onlistmax(c, n) ∗ addMaynotin ∧ bound(p, e)
∨ ∃v, v′. nodes2(c, v, n, v′) ∗ ((e < v ∧ addMaynotin) ∨ (e = v ∧ addMayin)) ∧ bound(p, e)

}
if (c.val != e) {
{∃v. (onlistmax(c, n) ∨ onlist(c, v) ∨ notonlist(c)) ∗ t� (ADD, e) ∧ bound(p, e) ∧ e < v}
n := cons(e, c, false);
{∃v. (onlistmax(c, n) ∨ onlist(c, v) ∨ notonlist(c)) ∗ U(n, e, c) ∗ t� (ADD, e) ∧ bound(p, e) ∧ e < v}
< s := cas(&(p.(next, mark)), c, n, false, false);
if (s) linself; >

if (!s)
{I ∗ t� (ADD, e) ∧ (e < MAX)}
continue;

{I ∗ t� (end, true)}
return true;

} else {
commit(t� (end, false));
{I ∗ t� (end, false)}
return false;

}
}

Figure 55. Proof Outline of Add of Lock-Free List for Thread t

61 2013/4/20

IntSet GN; //Auxiliary global variable for verification: removed nodes
IntSet OutOps; //Auxiliary global variable for verification: thread descriptors for contains

rmv(e):
local p, c, n, m, s;
{I ∗ t� (RMV, e) ∧ (e < MAX)}
while (true) {

retry: p := Head;
< c := p.next;

if (e < c.val) trylinself; >

{∃v. (onlist(c, v) ∨ notonlist(c)) ∗ ((e < v ∧ rmvMaynotin) ∨ (v ≤ e ∧ rmvMayin)) ∧ bound(p, e)}
while (true) {

< (n, m) := c.(next, mark);
if (!m && n != null && c.val < e < n.val) trylinself; > m ∧ ∃v, v′. (onlistm(c, v, n, v′) ∨ notonlist(c, v)) ∗ ((e < v ∧ rmvMaynotin) ∨ (v ≤ e ∧ rmvMayin)) ∧ bound(p, e)
∨ ¬m ∧ onlistmax(c, n) ∗ rmvMaynotin ∧ bound(p, e)
∨ ¬m ∧ ∃v, v′. nodes2(c, v, n, v′) ∗ (((e < v ∨ v < e < v′) ∧ rmvMaynotin) ∨ ((v = e ∨ v′ ≤ e) ∧ rmvMayin)) ∧ bound(p, e)

while (m) {
{∃v, v′. (onlistm(c, v, n, v′) ∨ notonlist(c, v)) ∗ ((e < v ∧ rmvMaynotin) ∨ (v ≤ e ∧ rmvMayin)) ∧ bound(p, e)}
< s := cas(&(p.(next, mark)), c, n, false, false); if (s) GN := GN ∪ {c};

if (s && e < n.val) trylinself; >{
s ∧ ∃v′. (onlist(n, v′) ∨ notonlist(n)) ∗ ((e < v′ ∧ rmvMaynotin) ∨ (v′ ≤ e ∧ rmvMayin)) ∧ bound(p, e)
∨ ¬s ∧ I ∗ (rmvMayin ∨ rmvMaynotin) ∧ (e < MAX)

}
if (!s) {

commit(t� (RMV, e));
{I ∗ t� (RMV, e) ∧ (e < MAX)}
continue retry;

}
c := n;
< (n, m) := c.(next, mark);

if (!m && n != null && c.val < e < n.val) trylinself; >
}
if (c.val >= e)

break;
{∃v, v′. nodes2(c, v, n, v′) ∗ ((v < e < v′ ∧ rmvMaynotin) ∨ (v′ ≤ e ∧ rmvMayin)) ∧ bound(c, e)}
p := c;
c := n;

}{
onlistmax(c, n) ∗ rmvMaynotin ∧ bound(p, e)
∨ ∃v, v′. nodes2(c, v, n, v′) ∗ ((e < v ∧ rmvMaynotin) ∨ (v = e ∧ rmvMayin)) ∧ bound(p, e)

}
if (c.val = e) {
{(onlist(c, e) ∨ notonlist(c)) ∗ t� (RMV, e) ∧ bound(p, e)}
n := c.next;
< s := cas(&(c.(next, mark)), n, n, false, true);
if (s) { linself;

foreach d in OutOps
if (d.arg = e) { d.res:= false; trylin(d.id); } } >

if (!s)
{I ∗ t� (RMV, e) ∧ (e < MAX)}
continue;

{(onlistm(c, e, n,) ∨ notonlist(c)) ∗ t� (end, true) ∧ bound(p, e)}
< s := cas(&(p.(next, mark)), c, n, false, false); if (s) GN := GN ∪ {c}; >
{I ∗ t� (end, true)}
return true;

} else {
commit(t� (end, false));
{I ∗ t� (end, false)}
return false;

}
}

Figure 56. Proof Outline of Remove of Lock-Free List for Thread t

62 2013/4/20

E.10 CCAS
As we mentioned in Section 6.3, CCAS (conditional compare-and-
swap) [30] is a simplified version of the RDCSS algorithm which
will show later. We have given the CCAS code in Figure 16. Here
we formally define the invariant, the rely and the guarantee in
Figure 57, and give the full proof in Figure 58 where we highlight
the instrumented auxiliary commands.

To define the precise invariant, we introduce an auxiliary vari-
able D and an auxiliary field status in each descriptor. Here D
collects the garbage thread descriptors, which were once put into
a but now is not in a anymore. The status field is like the aux-
iliary variable EPush in HSY stack (Appendix E.2). Roughly, it is
used to make ownership transfer of abstract operations explicit. The
field has three values: UNDEF, DONE and RET. When the descrip-
tor is allocated (line 3 in Figure 16), its status is UNDEF. When
the operation is finished (lines 15 and 17), the field is set to DONE.
Note currently the finished abstract operation is still shared between
threads. When the thread wants to return, it needs to set status to
RET, and gets back the ownership of the abstract operation.

We formally define the precise invariant in Figure 57. It says,
the shared state contains three parts. The first part invFlag is the
flag bit at concrete and abstract levels. The second part is about
a and the affiliated thread descriptor and abstract operation. It
says either a is a value at both levels (aVal); or the concrete
a contains a descriptor (aDesc), and the corresponding abstract
operation should not have finished (notDone), or may have tried to
be linearized and finished successfully (trySucc) or failed (tryFail),
or may have tried to be linearized several times (by the thread
itself or by the environment) and both success and failure are
possible speculations (tryBoth). The last part garb contains the
thread descriptors which were in a but are not anymore. Those
descriptors must be marked as DONE or RET, and if the status field
is DONE, the corresponding abstract operation is also available.

The guarantee defined in Figure 57 corresponds to the actions
in the code. PlaceD corresponds to line 4 or 7 in Figure 16, which
stores the thread descriptor in a and transfers both the descriptor
and the corresponding abstract operation from the thread-local state
to shared. TrylinSucc and TrylinFail correspond to line 13, which
have been discussed in Section 6.3. RmvDSucc and RmvDFail cor-
respond to line 15 and 17 respectively, which remove the descriptor
from a and also commit the correct guesses. Finally, Done2Ret sets
the status field of the descriptor from DONE to RET, and transfers
the ownership of the abstract operation back to the thread.

We give the proof in Figure 58. The proof is almost straight-
forward, following the rely-guarantee-based inference rules. To
simplify the proof (and help define the precise invariant), we add
line 11 in Figure 58, which reclaims the descriptor when we are
sure that it will not be used by any thread anymore. Actually, as in-
dicated by our proof, the descriptor is locally owned by the thread at
that time. Adding this line does not affect the correctness of the al-
gorithm, since the algorithm assumes garbage collectors to reclaim
those unreachable descriptors. We just make part of the garbage
collection work explicit, when we have enough knowledge to re-
claim the garbage by ourselves.

The interesting part is to reason about line 14 in Figure 58.
Before that line, we have aDesc, which is roughly notDone ∨
trySucc∨ tryFail∨ tryBoth, as we mentioned. It says, the abstract
operation has not been helped (notDone), or the environment may
have helped try to linearize it (trySucc or tryFail or tryBoth). Note
that the environment is uncertain, so all the four cases are possible
(connected by ∨), in particular we may have the single speculation
notDone. This ensures that we cannot cheat by imagining some
non-existent environment threads to help linearize the operation.
After line 14, we are sure that the guess endSucc must exist if we
read a true flag, and the guess endFail must exist otherwise, since

the current thread have tried to linearize the operation. Then we
will never fail at the commit commands later.

63 2013/4/20

I
def
= invFlag ∗ (aVal ∨ aDesc(, , ,)) ∗ garb

invFlag
def
= ∃b. (flag = b) ∗ flag Z⇒ b garb

def
= ~d∈D.(∃t. end(d, t,) ∨ dRet(d, t))

dDone(d, t)
def
= d 7→ (t, , , DONE) dRet(d, t)

def
= d 7→ (t, , , RET)

begin(d, t, o, n)
def
= d 7→ (t, o, n, UNDEF) ∗ t� (CCAS, o, n) end(d, t, r)

def
= dDone(d, t) ∗ t� (end, r)

aVal
def
= ∃v. (a = v) ∗ (a Z⇒ v) ∧ ¬IsDesc(v)

aDesc(d, t, o, n)
def
= (a = d) ∗ d 7→ (t, o, n, UNDEF) ∗ (notDone(t, o, n) ∨ trySucc(t, o, n) ∨ tryFail(t, o, n) ∨ tryBoth(t, o, n))

notDone(t, o, n)
def
= t� (CCAS, o, n) ∗ (a Z⇒ o)

endSucc(t, o, n)
def
= t� (end, o) ∗ (a Z⇒ n) endFail(t, o)

def
= t� (end, o) ∗ (a Z⇒ o)

trySucc(t, o, n)
def
= notDone(t, o, n)⊕ endSucc(t, o, n) tryFail(t, o, n)

def
= notDone(t, o, n)⊕ endFail(t, o)

tryBoth(t, o, n)
def
= notDone(t, o, n)⊕ endSucc(t, o, n)⊕ endFail(t, o)

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
= (SetFlag ∨ PlaceDt ∨ TrylinSucc ∨ TrylinFail ∨ RmvDSucc ∨ RmvDFail ∨ Done2Rett ∨ Id) ∗ Id ∧ (I n I)

SetFlag
def
= invFlag n invFlag

PlaceDt
def
= ∃v, d, o, n. ((a = v) ∧ ¬IsDesc(v)) n ((a = d) ∗ begin(d, t, o, n))

TrylinSucc
def
= (∃t, o, n. (flag ∗ notDone(t, o, n)) n (flag ∗ endSucc(t, o, n)))⊕ Id

TrylinFail
def
= (∃t, b, o, n. (¬flag ∗ notDone(t, o, n)) n (¬flag ∗ endFail(t, o)))⊕ Id

RmvDSucc
def
= ∃d, t, o, n, Sd. ((a = d) ∗ d 7→ (t, o, n, UNDEF) ∗ (D = Sd) ∗ (endSucc(t, o, n)⊕ true))
n ((a = n) ∗ d 7→ (t, o, n, DONE) ∗ (D = Sd ∪ {d}) ∗ endSucc(t, o, n))

RmvDFail
def
= ∃d, t, o, n, Sd. ((a = d) ∗ d 7→ (t, o, n, UNDEF) ∗ (D = Sd) ∗ (endFail(t, o)⊕ true))

n ((a = o) ∗ d 7→ (t, o, n, DONE) ∗ (D = Sd ∪ {d}) ∗ endFail(t, o))

Done2Rett
def
= ∃d. end(d, t,) n dRet(d, t)

aDescSucc(b, d, t, o, n)
def
= b ∧ (a = d) ∗ d 7→ (t, o, n, UNDEF) ∗ (trySucc(t, o, n) ∨ tryBoth(t, o, n))

aDescFail(b, d, t, o, n)
def
= ¬b ∧ (a = d) ∗ d 7→ (t, o, n, UNDEF) ∗ (tryFail(t, o, n) ∨ tryBoth(t, o, n))

aDescOther(d)
def
= ∃t, o. (aDesc(d, t, o,) ∨ end(d, t, o) ∨ dRet(d, t)) ∧ t 6= cid

Figure 57. Precise Invariant, Rely and Guarantee of CCAS (for thread t)

64 2013/4/20

casaSucc
def
= (r = o) ∗ (I ∧ ((aDesc(d, cid, o, n) ∨ end(d, cid, o)) ∗ true))

casaFailVal
def
= (r 6= o ∧ ¬IsDesc(r)) ∗ I ∗ end(d, cid, r)

casaFailDesc
def
= (I ∧ aDescOther(r) ∗ true) ∗ begin(d, cid, o, n)

CCAS(o, n):
local r, d;{
I ∗ cid� (CCAS, o, n)

}
1 d := cons(cid, o, n, UNDEF);{

I ∗ begin(d, cid, o, n)
}

2 < r := cas(&a, o, d); if (r != o && !IsDesc(r)) linself; >{
casaSucc ∨ casaFailVal ∨ casaFailDesc

}
3 while (IsDesc(r)) {{

casaFailDesc
}

4 Complete(r);{
I ∗ begin(d, cid, o, n)

}
5 < r := cas(&a, o, d); if (r != o && !IsDesc(r)) linself; >
6 }{

casaSucc ∨ casaFailVal
}

7 if (r = o) {{
casaSucc

}
8 Complete(d);{

I ∧ end(d, cid, r) ∗ true
}

9 d.status := RET;{
(I ∧ dRet(d, cid) ∗ true) ∗ cid� (end, r)

}
10 } else {{

I ∗ end(d, cid, r)
}

11 dispose(d);{
I ∗ cid� (end, r)

}
12 }{

I ∗ cid� (end, r)
}

13 return r;

Complete(d):
local v, s;{
I ∧ (aDesc(d, t, o, n) ∨ end(d, t, o) ∨ (dRet(d, t) ∧ t 6= cid)) ∗ true

}
14 < v := flag; if (a = d) trylin(d.id); >{

I ∧ (aDescSucc(v, d, t, o, n) ∨ aDescFail(v, d, t, o, n) ∨ end(d, t, o) ∨ (dRet(d, t) ∧ t 6= cid)) ∗ true
}

15 if (v){
I ∧ (aDescSucc(v, d, t, o, n) ∨ end(d, t, o) ∨ (dRet(d, t) ∧ t 6= cid)) ∗ true

}
16 < s := cas(&a, d, d.n); if (s = d) { d.status := DONE; D := D ∪ {d}; commit(d.id� (end, d.o) ∗ a Z⇒ d.n); } >
17 else{

I ∧ (aDescFail(v, d, t, o, n) ∨ end(d, t, o) ∨ (dRet(d, t) ∧ t 6= cid)) ∗ true
}

18 < s := cas(&a, d, d.o); if (s = d) { d.status := DONE; D := D ∪ {d}; commit(d.id� (end, d.o) ∗ a Z⇒ d.o); } >{
I ∧ (end(d, t, o) ∨ (dRet(d, t) ∧ t 6= cid)) ∗ true

}
Figure 58. Proof Outline of CCAS for Thread cid

65 2013/4/20

E.11 RDCSS
RDCSS (restricted double-compare single-swap) is part of Harris
et al.’s MCAS algorithm [12]. We show its code in Figure 59. It
manipulates two sets of memory cells: the set C is the control sec-
tion, and the set A is the data section. RDCSS takes five parameters:
a control location c in C, a data location a in A, an expected value
e for c, an expected old value o for a, and a new value n for a. It
wants to atomically update a’s value to n, if both c and a contain
the expected values e and o respectively; otherwise it does nothing.
It returns a’s old value. The code is similar to CCAS. The object
also provides a method RDCSSRead, which reads from a inA. Note
RDCSSRead will first complete the pending RDCSS operation if a
descriptor for that operation is in a.

As in CCAS, we add an auxiliary variable D for collecting the
garbage descriptors and an auxiliary field status in a descriptor
for indicating the ownership of the descriptor (whether it is shared
or thread-local). Both are write-only and will not affect the execu-
tions of the implementation.

The proof is similar to CCAS’s proof. We define the precise
invariant, the rely and the guarantee conditions in Figure 60, and
outline the proof (with the instrumented auxiliary commands being
highlighted) in Figure 61.

The precise invariant I defined in Figure 60 says, a shared state
consists of three parts, the first part invC is the control section at
both the concrete and abstract levels, the last part garb is for the
garbage descriptors and abstract operations which have been fin-
ished but have not returned, and the remaining part is for the data
section. Similar to the precise invariant for CCAS in Figure 57,
each data a is a value at both levels (aVal); or the concrete a con-
tains a descriptor (aDesc), and the corresponding abstract operation
should not have finished (notDone), or may have tried to be lin-
earized and finished successfully (trySucc) or failed (tryFail), or
may have tried to be linearized several times (by the thread itself or
by the environment) and both success and failure are possible spec-
ulations (tryBoth). The rely and the guarantee are similar to those
for CCAS. Note now we are considering sets of locations rather
than a single fixed flag and a.

The proof in Figure 61 is quite similar to CCAS, except that
now we also take c and a as arguments.

struct ThrdDesc {
int id;
int c, a, e, o, n;

}

RDCSS(c, a, e, o, n) :
local r, d;

1 d := cons(cid, c, a, e, o, n);
2 r := cas(a, o, d);
3 while (IsDesc(r)) {
4 Complete(r);
5 r := cas(a, o, d);
6 }
7 if (r = o) {
8 Complete(d);
9 }

10 return r;

Complete(d) :
local v;

11 v := [d.c];
12 if (v = d.e)
13 cas(d.a, d, d.n);
14 else
15 cas(d.a, d, d.o);

RDCSSRead(a) :
local r;

16 r := [a];
17 while (IsDesc(r)) {
18 Complete(r);
19 r := [a];
20 }
21 return r;

WriteC(c, n) :
22 [c] := n;

Figure 59. RDCSS Code

66 2013/4/20

I
def
= invC ∗ (~a∈A.(aVal(a) ∨ aDesc(, , a,))) ∗ garb

invC
def
= ~c∈C . invc(c) invc(c)

def
= ∃v. (c 7→ v) ∗ ([c] Z⇒ v)

garb
def
= ~d∈D.(∃t. end(d, t,) ∨ dRet(d, t)) dDone(d, t)

def
= d 7→ (t, , , , , , DONE) dRet(d, t)

def
= d 7→ (t, , , , , , RET)

begin(d, t, c, a, e, o, n)
def
= d 7→ (t, c, a, e, o, n, UNDEF) ∗ t� (RDCSS, c, a, e, o, n) end(d, t, r)

def
= dDone(d, t) ∗ t� (end, r)

aVal(a)
def
= ∃v. (a 7→ v) ∗ ([a] Z⇒ v) ∧ ¬IsDesc(v)

aDesc(d, t, c, a, e, o, n)
def
=

(a 7→ d) ∗ d 7→ (t, c, a, e, o, n, UNDEF) ∗ (notDone(t, c, a, e, o, n) ∨ trySucc(t, c, a, e, o, n) ∨ tryFail(t, c, a, e, o, n) ∨ tryBoth(t, c, a, e, o, n))

aDesc(d, t, a, o)
def
= aDesc(d, t, , a, , o,)

notDone(t, c, a, e, o, n)
def
= t� (RDCSS, c, a, e, o, n) ∗ ([a] Z⇒ o)

endSucc(t, a, o, n)
def
= t� (end, o) ∗ ([a] Z⇒ n) endFail(t, a, o)

def
= t� (end, o) ∗ ([a] Z⇒ o)

trySucc(t, c, a, e, o, n)
def
= notDone(t, c, a, e, o, n)⊕ endSucc(t, a, o, n)

tryFail(t, c, a, e, o, n)
def
= notDone(t, c, a, e, o, n)⊕ endFail(t, a, o)

tryBoth(t, c, a, e, o, n)
def
= notDone(t, c, a, e, o, n)⊕ endSucc(t, a, o, n)⊕ endFail(t, a, o)

Rt
def
=
∨

t′ 6=t Gt′

Gt
def
= [WriteC ∨ PlaceDt ∨ TrylinSucc ∨ TrylinFail ∨ RmvDSucc ∨ RmvDFail ∨ Done2Rett]I

WriteC
def
= ∃c ∈ C. invc(c) n invc(c)

PlaceDt
def
= ∃v, d, a ∈ A. ((a 7→ v) ∧ ¬IsDesc(v)) n ((a 7→ d) ∗ begin(d, t, , a, , ,))

TrylinSucc
def
= (∃t, c ∈ C, a ∈ A, e, o, n. ((c 7→ e) ∗ notDone(t, c, a, e, o, n)) n ((c 7→ e) ∗ endSucc(t, a, o, n)))⊕ Id

TrylinFail
def
= (∃t, c ∈ C, a ∈ A, e, o, n, v. ((c 7→ v) ∗ notDone(t, c, a, e, o, n) ∧ v 6= e) n ((c 7→ v) ∗ endFail(t, a, o)))⊕ Id

RmvDSucc
def
= ∃d, t, a ∈ A, o, n, Sd. ((a 7→ d) ∗ d 7→ (t, , a, , o, n, UNDEF) ∗ (D = Sd) ∗ (endSucc(t, a, o, n)⊕ true))
n ((a 7→ n) ∗ dDone(d, t) ∗ (D = Sd ∪ {d}) ∗ endSucc(t, a, o, n))

RmvDFail
def
= ∃d, t, a ∈ A, o, Sd. ((a 7→ d) ∗ d 7→ (t, , a, , o, , UNDEF) ∗ (D = Sd) ∗ (endFail(t, a, o)⊕ true))

n ((a 7→ o) ∗ dDone(d, t) ∗ (D = Sd ∪ {d}) ∗ endFail(t, a, o))

Done2Rett
def
= ∃d. end(d, t,) n dRet(d, t)

aDescSucc(v, d, t, a, o)
def
=

∃c, e, n. (v = e) ∗ (a 7→ d) ∗ d 7→ (t, c, a, e, o, n, UNDEF) ∗ (trySucc(t, c, a, e, o, n) ∨ tryBoth(t, c, a, e, o, n))

aDescFail(v, d, t, a, o)
def
=

∃c, e, n. (v 6= e) ∗ (a 7→ d) ∗ d 7→ (t, c, a, e, o, n, UNDEF) ∗ (tryFail(t, c, a, e, o, n) ∨ tryBoth(t, c, a, e, o, n))

aDescOther(d, a)
def
= ∃t, o. (aDesc(d, t, a, o) ∨ end(d, t, o) ∨ dRet(d, t)) ∧ t 6= cid

Figure 60. Precise Invariant, Rely and Guarantee of RDCSS (for thread t)

67 2013/4/20

casaSucc
def
= (r = o) ∗ (I ∧ (aDesc(d, cid, a, o) ∨ end(d, cid, o)) ∗ true)

casaFailVal
def
= (r 6= o ∧ ¬IsDesc(r)) ∗ I ∗ end(d, cid, r)

casaFailDesc
def
= (I ∧ aDescOther(r, a) ∗ true) ∗ begin(d, cid, c, a, e, o, n)

RDCSS(c, a, e, o, n):
local r, d;{
I ∗ cid� (RDCSS, c, a, e, o, n)

}
1 d := cons(cid, c, a, e, o, n, UNDEF);{

I ∗ begin(d, cid, c, a, e, o, n)
}

2 < r := cas(a, o, d); if (r != o && !IsDesc(r)) linself; >{
casaSucc ∨ casaFailVal ∨ casaFailDesc

}
3 while (IsDesc(r)) {{

casaFailDesc
}

4 Complete(r);{
I ∗ begin(d, cid, c, a, e, o, n)

}
5 < r := cas(a, o, d); if (r != o && !IsDesc(r)) linself; >
6 }{

casaSucc ∨ casaFailVal
}

7 if (r = o) {{
casaSucc

}
8 Complete(d);{

I ∧ end(d, cid, r) ∗ true
}

9 d.status := RET;{
(I ∧ dRet(d, cid) ∗ true) ∗ cid� (end, r)

}
10 } else {{

I ∗ end(d, cid, r)
}

11 dispose(d);{
I ∗ cid� (end, r)

}
12 }{

I ∗ cid� (end, r)
}

13 return r;

Complete(d):
local v, s;{
I ∧ (aDesc(d, t, a, o) ∨ end(d, t, o) ∨ (dRet(d, t) ∧ t 6= cid)) ∗ true

}
14 < v := [d.c]; if ([d.a] = d) trylin(d.id); >{

I ∧ (aDescSucc(v, d, t, a, o) ∨ aDescFail(v, d, t, a, o) ∨ end(d, t, o) ∨ (dRet(d, t) ∧ t 6= cid)) ∗ true
}

15 if (v = d.e){
I ∧ (aDescSucc(v, d, t, a, o) ∨ end(d, t, o) ∨ (dRet(d, t) ∧ t 6= cid)) ∗ true

}
16 < s := cas(d.a, d, d.n); if (s = d) { d.status := DONE; D := D ∪ {d}; commit(d.id� (end, d.o) ∗ d.a Z⇒ d.n); } >
17 else{

I ∧ (aDescFail(v, d, t, a, o) ∨ end(d, t, o) ∨ (dRet(d, t) ∧ t 6= cid)) ∗ true
}

18 < s := cas(d.a, d, d.o); if (s = d) { d.status := DONE; D := D ∪ {d}; commit(d.id� (end, d.o) ∗ d.a Z⇒ d.o); } >{
I ∧ (end(d, t, o) ∨ (dRet(d, t) ∧ t 6= cid)) ∗ true

}
RDCSSRead(a):

local r;{
I ∗ cid� (RDCSSRead, a)

}
19 < r := [a]; if (!IsDesc(r)) linself; >{

(I ∧ aDescOther(r, a) ∗ true) ∗ cid� (RDCSSRead, a) ∨ (¬IsDesc(r) ∧ I ∗ cid� (end, r))
}

20 while (IsDesc(r)) {{
(I ∧ aDescOther(r, a) ∗ true) ∗ cid� (RDCSSRead, a)

}
21 Complete(r);{

I ∗ cid� (RDCSSRead, a)
}

22 < r := [a]; if (!IsDesc(r)) linself; >
23 }{

I ∗ cid� (end, r)
}

24 return r;

Figure 61. Proof Outline of RDCSS for Thread cid

68 2013/4/20

	Introduction
	Challenges and Our Approach
	Basic Logic for Fixed LPs
	Support Helping Mechanism with Pending Thread Pool
	Try-Commit Commands for Future-Dependent LPs
	Simulation as Meta-Theory

	Basic Technical Settings and Linearizability
	Language and Semantics
	Object Specification and Linearizability
	Contextual Refinement and Linearizability

	A Relational Rely-Guarantee Style Logic
	Instrumented Code and States
	Assertions
	Inference Rules
	Semantics and Partial Correctness

	Soundness via Simulation
	Examples
	Pair Snapshot
	MS Lock-Free Queue
	Conditional CAS

	Related Work and Conclusion
	Proofs for Theorem 6 (Equivalence Between Linearizability and Contextual Refinement)
	Contextual Refinement Implies Linearizability
	Linearizability Implies Contextual Refinement

	Inference Rules for Assertions and Actions and More Discussions on Commit
	Assertions
	Actions
	Properties for qp
	Examples of commit-spec-conj and multi-commit rules

	Logic Soundness Proofs
	Proofs of Lemma 8 (Simulation Implies Contextual Refinement)
	Definitions of Simulations for Thread and Program
	Simulation for Thread is Lifted from Simulation for Method, and is Compositional
	Simulation for Program Implies Refinement

	Proofs of Lemma 9 (Logic Ensures Simulation for Method)
	Derive Simulation from Semantics of Judgments
	Soundness of Inference Rules

	Proof of Theorem 10 (Logic Soundness w.r.t. Contextual Refinement and Linearizability)

	Linking with Client Program Verification
	The Assertion Language for Client Verification
	The link Rule
	Client Verification

	More Examples
	Treiber Stack
	HSY Elimination-Based Stack
	MS Two-Lock Queue
	MS Lock-Free Queue
	DGLM Queue
	Lock-Coupling List
	Optimistic List
	Lazy List
	Lock-Free List
	CCAS
	RDCSS

