
Reasoning about Optimistic Concurrency

Using a Program Logic for History

Ming Fu1, Yong Li1, Xinyu Feng1,2, Zhong Shao3, and Yu Zhang1

1 University of Science and Technology of China
2 Toyota Technological Institute at Chicago

3 Yale University

Abstract. Optimistic concurrency algorithms provide good performance
for parallel programs but they are extremely hard to reason about. Pro-
gram logics such as concurrent separation logic and rely-guarantee rea-
soning can be used to verify these algorithms, but they make heavy uses
of history variables which may obscure the high-level intuition under-
lying the design of these algorithms. In this paper, we propose a novel
program logic that uses invariants on history traces to reason about op-
timistic concurrency algorithms. We use past tense temporal operators
in our assertions to specify execution histories. Our logic supports mod-
ular program specifications with history information by providing sepa-
ration over both space (program states) and time. We verify Michael’s
non-blocking stack algorithm and show that the intuition behind such
algorithm can be naturally captured using trace invariants.

1 Introduction

Optimistic concurrency algorithms [6, 7] allow concurrent access to shared data
and ensure data consistency by performing dynamic conflict detection. These al-
gorithms can be more efficient than coarse-grained lock-based synchronization if
there is sufficient data independence. However, the design of the algorithms has
to consider many more thread-interleaving scenarios than coarse-grained syn-
chronization. The algorithms are usually complex and error-prone. Their cor-
rectness is usually far from obvious and is hard to verify too.

As an example, Fig. 1 shows a non-blocking stack algorithm, where a stack is
implemented as a linked list pointed by the Top pointer. It allows simultaneous
read (line 4 and 13) and write (7, 15) of Top, and the conflict detection is done
by the CAS (compare-and-swap) command. This algorithm has two subtle bugs.
One is that t might be a dangling pointer when the dereference occurs in line
6. The other is the notorious ABA problem: suppose the top three nodes on the
stack are A, B and C; Thread 1 calls pop and reaches the end of line 6; so t points
to A and next points to B; then Thread 2 comes, pops A and B, and pushes
A onto the stack; Thread 1 continues to execute line 7, where the comparison
succeeds and Top is set to point to B, which is no longer on the stack.

Here, we have to refer to the historical events to explain the problems above.
It is not surprising that temporal reasoning is needed to argue for the correctness
of such highly concurrent algorithms.



pop(){

01 local done, next, t;

02 done := false;

03 while (!done){

04 t := Top;

05 if (t == null) return null;

06 next := t.Next;

07 done := CAS(&Top, t, next);

08 }

09 return t;

}

push(x){

10 local done, t;

11 done := false;

12 while (!done){

13 t := Top;

14 x.Next := t;

15 done := CAS(&Top, t, x);

16 }

17 return true;

}

Fig. 1. A Buggy Implementation of Non-Blocking Stacks

Concurrent separation logic (CSL [13]) and rely-guarantee (R-G) based rea-
soning [8] are two well-studied approaches to concurrency verification. Previous
work [14, 18] has shown that they can be used to verify fine-grained and op-
timistic algorithms. However, since assertions in these logics only specify pro-
gram states (or state transitions in R-G reasoning), it is difficult to use them
to express directly the temporal properties about the subtle interaction between
threads. Instead, we have to introduce history variables to record the occurrence
of certain events. This indirect approach to specifying historical events makes
specifications and proofs complex, and in many cases fails to demonstrate the
high-level intuition behind the design of the algorithms.

In this paper, we propose a new program logic that uses invariants on his-
torical execution traces to reason about optimistic concurrency algorithms. The
logic extends previous work on R-G reasoning by introducing past tense tempo-
ral operators in the assertion language. It allows us to specify historical events
directly without using history variables, which makes the verification process
more modular and intuitive.

Although it has also been observed before that past tense operators in tem-
poral logic can be used to eliminate the need of history variables [10], developing
a modular logic with temporal reasoning that is able to verify modern concurrent
algorithms has so far been an open problem. Our logic inherits previous work
on combining R-G reasoning with separation logic [3, 19, 2] to support modu-
lar verification. Separating conjunction in separation logic is now defined over
assertions on execution histories instead of state assertions. The frame rule and
the hide rule in the Local Rely-Guarantee (LRG) logic [2]—the keys for modular
verification—are supported naturally in this new setting.

We apply our new logic to reason about Michael’s non-blocking stack al-
gorithm [11] which uses hazard pointers to fix the buggy algorithm in Fig. 1.
We use trace invariants to capture the main intuition underlying the algorithm.
The program specifications and proofs used in our logic are more intuitive than
those from previous work [14]. They do not require history variables. Our logic



(Expr) E ::= x | n | E+E | E-E | . . .

(Bexp) B ::= true | false | E=E | E 6=E | . . .

(Stmts) C ::= x :=E | x :=[E] | [E] :=E′ | skip | x :=cons(E, . . . , E)

| dispose(E) | if B then C else C | while B do C | 〈C〉 | C;C

(Prog) W ::= t1.C1 ‖ . . .‖ tn.Cn (ThrdID) t ∈ Nat

Fig. 2. A Concurrent Programming Language

(Store) s ∈ PVar ⇀fin Int (Heap) h ∈ Nat ⇀fin Int

(State) σ ∈ Store×Heap

(Trace) T ::= (σ0, t0) :: (σ1, t1) :: · · · :: (σn, tn) (Trans) R, G ∈ P(Trace)

Fig. 3. Program States and Execution Traces

T .last = (σ, ) (C, σ) −→ (C′, σ′)

(t.C, T ) −֒→ (t.C′, T :: (σ′, t))

T .last = (σ, ) (C, σ) −→ abort

(ti.Ci, T ) −֒→abort

(ti.Ci, T ) −֒→ (ti.Ci
′, T ′)

(t1.C1 ‖ . . . ti.Ci . . .‖ tn.Cn, T )
R
7−−→ (t1.C1 ‖ . . . ti.Ci

′ . . .‖ tn.Cn, T ′)

(ti.Ci, T ) −֒→ abort

(t1.C1 ‖ . . . ti.Ci . . .‖ tn.Cn, T )
R
7−−→ abort

(T :: (σ, t)) ∈ R

(W,T )
R
7−−→ (W,T :: (σ, t))

Fig. 4. Selected Rules of Operational Semantics

also supports a new frame rule that further simplifies the proofs (e.g., for the
retireNode function in Fig. 9) and makes the verification more modular.

2 A Concurrent Programming Language

Figure 2 shows a simple concurrent language. The statements x := [E] and
[E] := E are memory-load and store operations respectively; cons allocates
fresh memory cells, and dispose frees a cell. The atomic block 〈C〉 executes C

atomically. Other statements have standard meanings. A program W contains
n parallel threads, each marked with a unique thread ID (e.g., ti for Ci).

Figure 3 defines program states and execution traces. The store s is a finite
partial mapping from program variables to integers; the heap h maps memory
locations (natural numbers) to integers. A program state σ is a pair (s, h). An
execution trace T is a (nonempty) finite sequence (σ0, t0) :: (σ1, t1) :: · · · ::
(σn, tn). A pair (σi, ti) in a trace T means that a thread with ID ti reached the
state σi after executing one step from the state σi−1. Thread ID t0 can be any



(StateAssert) P, Q ::= B | emph | emps | own(x) | E 7→ E | P ∗ Q | . . .

(TraceAssert) p, q, R, G, I ::= P | Id | [p]t | p ⊲ q | ⊖ p | p ∗ q | ∃X.p | ¬p | p ∨ q | . . .

Fig. 5. The Assertion Language

(s, h) |=sl emps iff s = ∅ (s, h) |=sl emph iff h = ∅

(s, h) |=sl own(x) iff dom(s) = {x}

(s, h) |=sl E1 7→ E2 iff there exist ℓ and n such that
JE1Ks = ℓ, JE2Ks = n, dom(h) = {ℓ} and h(ℓ) = n

σ |=sl P ∗ Q iff there exist σ1 and σ2

such that σ1 ⊎ σ2 = σ, σ1 |=SL P and σ2 |=SL Q

emp
def
= emps ∧ emph

Fig. 6. Semantics of Selected Separation Logic Assertions

value. We use T .last to denote the last element in T . A trace (T :: (σ, t)) in the
trace sets R and G is also used to model a single-step transition by the thread t

that starts from T and reaches a new state σ.
Figure 4 gives selected rules modeling the operational semantics (see the

technical report [4] for the complete rules). The binary relation −→ models a
transition over states made by a primitive statement. The definition is standard
and is omitted here. The relation −֒→ lifts state transitions to transitions over
traces. The thread ID of the executing thread t is recorded on the trace at the

end of the transition. Finally, the relation
R
7−−→ models the transitions over

traces made by programs in an environment characterized by R. Here R contains
all the possible transitions of the environment.

3 The Assertion Language

Our assertion language is defined in Fig. 5. We use separation logic assertions (P
and Q) to specify program states. Following Parkinson et al. [15], we also treat
program variables as resources. Semantics of some separation logic assertions are
shown in Fig. 6. We use σ1 ⊎σ2 to represent the union of the two disjoint states.

Trace assertions. Trace assertions p, q, R, G and I specify historical execution
traces. Semantics of trace assertions are defined in Fig. 7. Here we use |T | to
represent the length of T , and use Tk− to represent the subsequence resulting
from truncating the last k elements from T (0 ≤ k < |T |).

A state assertion P is viewed as a trace assertion that specifies only the last
state. Assertion Id says that the last two states on the trace are the same (i.e.
the last state transition is an identity transition). Assertion [p]t means that the



Tk−
def
= (σ0, t0) :: · · · :: (σn−k , tn−k) if T = (σ0, t0) :: · · · :: (σn, tn) and 0 ≤ k ≤ n

T |=P iff there exists σ such that T .last = (σ, ) and σ |=sl P

T |= Id iff there exist T ′ and σ such that T = T ′ :: (σ, ) :: (σ, )

T |=[p]t iff T .last = ( , t) and T |=p

T |=p ⊲ q iff there exists 0 < i < |T | such that Ti− |=p and ∀j < i. Tj− |=q

T |=⊖p iff 1 < |T | and T1− |=p JpK
def
= {T | T |=p}

((σ0, t0) :: . . . :: (σn, tn)) ⊕ ((σ′
0, t

′
0) :: . . . :: (σ′

m, t′m))

def
=

{

((σ0 ⊎ σ
′
0, t0) :: . . . :: (σn ⊎ σ

′
m, tn)) if n = m ∧ ∀0 ≤ i ≤ n.ti = t

′
i

undefined otherwise

T |=p ∗ q iff there exist T1 and T2 such that T = T1 ⊕ T2, T1 |=p and T2 |=q

p D q
def
= (p ⊲ q) ∨ p ♦− p

def
= p D true ⊟ p

def
= ¬♦− (¬p)

p ◮ q
def
= ♦− (♦− p ∧ q) p⋉t q

def
= ⊖p ∧ [q]t p⋉ q

def
= ∃t. p⋉t q

We assume unary operators (♦− and ⊖) have higher precedence than other operators.

Fig. 7. Semantics of Trace Assertions

trace satisfies p and the last state transition is made by the thread t. Assertion
p ⊲ q holds over T if and only if p holds over the trace Ti− for some i and q

holds ever since. It is also represented as q S p (q since p) in the literature of
temporal logic [10]. Assertion ⊖p holds if and only if the trace prior to the last
transition satisfies p. JpK is the set of traces that satisfy p.

Assertion p ∗ q lifts separating conjunction to traces; it specifies a program
trace consisting of two disjoint parts: one satisfies p and another q. Traces T1 and
T2 are disjoint if they have the same length, and for each i such that 0 ≤ i < |T |
the states in T1[i] and T2[i] are disjoint (see the definition of T1 ⊕ T2 in Fig. 7).

Other useful connectors can be defined using these primitive operators. As-
sertion p D q is a weaker version of p ⊲ q. Assertion ♦− p says that p was once
true in the history. Assertion ⊟p holds if and only if p holds at every step in the
history. Assertion p ◮ q says that p first came true in the history, and then q

came true later. Assertion p⋉t q means that the last transition is made by thread
t, and assertion p holds prior to the transition, and q holds after it. This allows
us to define the built-in ⋉ operator in LRG [2].

Example 3.1. In the TL2 transactional memory protocol [1], before updating
a shared memory cell, we must first acquire the corresponding lock and then
increase the global version clock. This requirement (among many others in the
protocol) can be defined as the following guarantee:

Gtid(x)
def
= ∃D, D′, T, T ′.

(

((x 7→ 0, D ∗ gt 7→ T ) ⊲ (x 7→ tid, D ∗ gt 7→ ))
∧(x 7→ tid, D ∗ gt 7→ T ′) ∧ (T ′ > T )

)

⋉tid(x 7→ tid, D′ ∗ gt 7→ T ′)



Here x points to two fields, its lock and its value. The first line above says that,
before the transition, the lock was acquired (it was changed from 0 to tid)
when the global version clock gt was T . Then the lock and the value have been
preserved ever since, but gt might have been changed. The second line says gt
is greater than T right before the transition. The third line says the value of x
is updated by the transition. This definition also implies that the increment of
gt is done after the lock is acquired.

The guarantee above refers to two events before the specified transition. In
traditional R-G reasoning, the guarantee condition can only specify two states,
so we have to introduce history variables to describe such historical events.

As in separation logic, a class of trace assertions that are of special interest
to us are those that are precise about the last state on the trace.

Definition 3.2 (Last-State-Precise Trace Assertions). p is last state pre-
cise, i.e. LPrec(p) holds, if and only if for all T , t, s, h, s1, s2, h1, h2, if s1 ⊆ s,
s2 ⊆ s, h1 ⊆ h, h2 ⊆ h, T :: ((s1, h1), t) |=p and T :: ((s2, h2), t) |=p, then s1 = s2

and h1 = h2.

The example below shows a last-state-precise assertion p can specify a precise
state domain that is determined dynamically by historical events. It is more
powerful than a precise state assertion P in separation logic [17]. This can also
be seen in our hazard-pointer-based stack example.

Example 3.3. Let I = ∃X.♦−(ℓ 7→ X ∗ true)∧(ℓ 7→ ∗ (X =0 ∧ r ∨ X 6=0 ∧ emp))
where r = x 7→ ∗y 7→ , then I is a last-state-precise trace assertion. It specifies
traces where the domain of the last state depends on the historical value X of ℓ.

4 A Program Logic for History

Now we present our program logic for history, named HLRG, which extends the
LRG logic [2] with trace assertions for reasoning about historical traces.

As in LRG, we use the judgments R; G⊢{p}W{q} and R; G; I ⊢t {p}C{q} for
well-formed programs and well-formed thread t respectively. The rely condition
R and the guarantee G specify the interference between the environment and
the thread. The judgments say informally that starting from a trace satisfying
both ⊟(R ∨ G) ∗ true and p, if the environment’s transitions satisfy R, then W

(or C) would not abort, its transitions satisfy G, and q holds at the end if W

(or C) terminates. The invariant I specifies the well-formedness of the shared
resource. Unlike in the LRG logic, R, G, I, p and q are all trace assertions now.

Figure 8 gives the main inference rules. The prog rule allows us to ver-
ify the whole program by verifying the n parallel threads t1.C1,t2.C2,. . ., tn.Cn

separately. Each thread ti has exclusive access to its own private resource spec-
ified by pi and qi. All threads can access the shared resource specified by r, r1

. . . rn. To verify each thread, we need to find an invariant I specifying the basic
well-formedness of the shared resource.



R∨G1∨. . .∨Gi−1∨Gi+1∨. . .∨Gn; Gi; I ⊢ti
{pi ∗ r}Ci{qi ∗ ri} ∀i ∈ {1, . . . , n}

r ∨ r1 ∨. . .∨ rn ⇒ I

R;G1∨. . .∨Gn⊢{p1∗. . .∗ pn∗r}t1.C1 ‖ . . .‖ tn.Cn{q1∗. . .∗ qn∗(r1∧. . .∧rn)}
(prog)

p ⇒ P {P}C{Q} p⋉t Q ⇒ G ∗ true

IdI ; G; I ⊢t {p} 〈C〉 {Q}
(atom)

where IdI is defined as Id∧(I⋉I).

p ⇒ p′ IdI ; G; I ⊢t {p
′}〈C〉{Q′} ⊖ p ∧ Q′ ⇒ q Sta({p, q}, R∗Id)

R; G; I ⊢t {p} 〈C〉 {q}
(atom-r)

R; G; I ⊢t {p}C{q}
Sta(r, R′∗Id) r ⇒ I ′ ∗ true

R∗R′; G∗G′; I∗I ′⊢t {p∗r}C{q∗r}
(frame)

R; G; I ⊢t {p}C{q}

R; G; I ⊢t {p ∧♦−r}C{q ∧♦−r}
(frameT)

R; G; I ⊢t {p ∧ (I ′∗true)}C{q} ⊟ (R ∨ G)⇒ (I ′ ∧ I ′′)

R; G; I ⊢t {p}C{q ∧ (I ′′∗true)}
(inv)

Fig. 8. Selected Inference Rules of the HLRG Program Logic

The atom rule says that we can treat C in the atomic block as sequential
code since its execution cannot be interrupted. Here the judgment {P}C{Q} can
be derived following the standard sequential separation logic rules [17], which we
do not show here. This rule allows us to strengthen P into a trace assertion p so
that we can carry the historical information. The transition from p to Q needs
to satisfy the guarantee G, which may have some constraints over the history
traces (examples about G can be found in Fig. 10 in Sec. 5).

The atom rule uses a strong rely condition about the environment, which is
an identity transition preserving the invariant I of the shared resource. To relax
it, we can apply the next atom-r rule borrowed from RGSep [18]. It allows us
to adjust the pre- and post-conditions so that they are both stable with respect
to the rely condition R.

Definition 4.1 (Stability). We say a trace assertion p is stable with respect
to a trace assertion q, i.e. Sta(p, q) holds, if and only if ⊖p ∧ q ⇒ p.

That is, if p holds before the most recent transition, and the transition satisfies
q, then p holds after it. This is the standard requirement in R-G reasoning.
With temporal operators, it can now be encoded as a temporal assertion. We
use Sta({p, q}, R) as a shorthand for Sta(p, R) ∧ Sta(q, R).

The interesting (and new) part of this atom-r rule is the post condition
q, which is weakened from the trace assertion ⊖p ∧ Q′. This allows us to carry
information about historical events happened before this atomic transition.

The frame rule comes from LRG. It supports local reasoning and allows
us to write “small” specifications about resources that are indeed accessed in



C. Invariants about other resources are preserved and can be added into the
specifications later. We also introduce a new frameT rule to show the frame
property over “time”. Since historical traces would not affect the execution of
programs, knowledge about history can be added when necessary.

The new inv rule is also very useful. It is like the reverse of the standard
consequence rule in Hoare logic, since it allows us to strengthen the pre-condition,
and prove a post-condition weaker than we wanted. This rule is sound because
the invariants I ′ and I ′′ can be derived from the fact that each step of the
transition satisfies R ∨ G, so that they can be used anywhere in the proof for
free. We will demonstrate the use of frame, frameT and inv in our example
in Sec. 5.

The rest of the rules are the same as those in LRG, and are not shown here.
Note that in each rule we implicitly require the following properties hold.

– fence(I, R) and fence(I, G);
– p ∨ q ⇒ I ∗ true;

where fence(I, p) is defined below:

fence(I, p)
def

= (Id ∧ (I⋉I) ⇒ p) ∧ (p ⇒ I⋉I) ∧ LPrec(I) .

Informally, it requires that the most recent transition is confined in a precise
domain enforced by the last-state-precise assertion I. This constraint is inher-
ited from LRG. Interested readers can refer to our previous work [2] to see the
technical discussions about this requirement.

Semantics and soundness. The semantics of our logic and its soundness proof
are similar to those of LRG. We first define the non-interference property below.

Definition 4.2 (Non-Interference). Let W = t1.C1 ‖ . . .‖ tn.Cn.

(W, T ,R)=⇒0G always holds. (W, T ,R)=⇒m+1G holds iff ¬(W, T )
R
7−−→ abort

and the following are true:

1. for all t and σ, if (T :: (σ, t))∈R, then for all k≤m, (W, T :: (σ, t),R)=⇒kG;
2. for all σ and i ∈ {1,. . ., n}, if (ti.Ci, T ) −֒→ (ti.Ci

′, T :: (σ, ti)), then (T ::
(σ, ti)) ∈ G and (t1.C1 ‖ . . . ti.Ci

′ . . . ‖ tn.Cn, T :: (σ, ti),R) =⇒k G holds
for all k≤m.

Then the semantics of R; G⊢{p}W{q} is defined below. Theorem 4.4 shows
the soundness theorem of the logic.

Definition 4.3. R; G |={p}W{q} iff, for all T such that T |=p ∧ (⊟(R ∨ G) ∗ true),
the following are true (where R=JR∗IdK and G=JG∗trueK):

1. if (W, T )
R
7−−→∗ (skip, T ′), then T ′ |=q;

2. for all m, (W, T ,R)=⇒mG.

Theorem 4.4 (Soundness). If R; G⊢{p}W{q} then R; G |={p}W{q}.

We show the proof in the extended technical report [4].



pop(){

01 local done, next, t, t1;

02 done := false;

03 while (!done){

04 t := Top;

05 if (t == null) return null;

06 HP[tid] := t;

07 t1 := Top;

08 if (t == t1){

09 next := t.Next;

10 done := CAS(&Top, t, next);

11 }

12 }

13 retireNode(t);

14 HP[tid] := null;

15 return t;

}

retireNode(t){

16 local i, t’;

17 i := 1;

18 while(i<=th_num){

19 if (i != tid){

20 t’ := HP[i];

21 if (t’!= t){

22 i:= i+1;

23 }

24 }else i:= i+1;

25 }

}

Fig. 9. Optimistic Lock-Free Stacks with Hazard Pointers

5 Verification of Lock-Free Stacks with Hazard Pointers

We now apply HLRG to verify Michael’s lock-free stacks, which use hazard
pointers [11] to address the problems with the algorithm in Fig. 1. In Fig. 9
we show the new pop function. The push function is the same as in Fig. 1 and
is omitted here. We use stack(Top, A) below to specify the shared stack, which
is implemented as a linked list pointed by Top. The set A records the memory
locations of the nodes on the list. It is kept to simplify our proofs. Below we use
E 7→ E1, E2 as a shorthand for E 7→ E1 ∗E+1 7→ E2, and E 7→ for ∃n. E 7→ n.

List(ℓ, ∅, nil)
def
= emp ∧ ℓ = null

List(ℓ,A, n ::L)
def
= ℓ ∈ A ∧ ∃ℓ

′
. (ℓ 7→ n, ℓ

′) ∗ List(ℓ′, A−{ℓ}, L)

stack(Top, A)
def
= ∃ℓ, L. (Top 7→ ℓ) ∗ List(ℓ, A,L) (1)

The algorithm fixes the ABA problem by using a global array HP, which
contains a “hazard” pointer for each thread. The array is specified by Ihp(HP).
Here HP+tid is the location of HP[tid], and th num is the number of threads.

Ihp(HP)
def
= ⊛tid∈[1..th num]. HP+tid 7→ (2)

where ⊛x∈s.p(x)
def
= s = ∅ ∧ emp ∨ ∃z. (s = {z}⊎s′) ∧ (⊛x∈s′ .p(x)) ∗ p(z)

and ⊎ is the union of disjoint sets.

Before a racy access to the top node on the stack, a thread stores the node’s
memory location into its HP entry (lines 06-08). This announces to other threads
that the node is being accessed and should not be reclaimed. When a node is suc-
cessfully removed from the stack (line 10), the remover thread calls retireNode
(line 13) and waits till after this node is no longer being accessed by any other



threads (i.e., not pointed by their HP entries). Finally, it clears its own HP entry
(line 14) before it obtains the full ownership of the node (line 15).

We use remove(ℓ, Top, HP, tid) in (3) to specify that the thread tid is in the
remove phase: it has popped the node at ℓ from the stack, but has not reached
line 14 yet. The part in front of D says that there was a primitive operation in
history, which popped the node from the stack. The D operator and the assertion
following it require that the removed node be pointed by the remover’s own HP

entry ever since. Here E1 ; E2 is a shorthand for (E1 7→ E2)∗true. The predicate
not rem(Top, HP, tid) in (4) says that tid is currently not in the remove phase.

remove(ℓ, Top, HP, tid)
def
= (3)

(

((HP+tid 7→ ℓ ∗ Top ; ℓ) ⋉tid (HP+tid 7→ ℓ ∗ ∃ℓ
′
.Top ; ℓ

′ ∧ ℓ 6= ℓ
′))

D HP+tid ; ℓ
)

∧ ℓ 6= null

not rem(Top, HP, tid)
def
= ¬∃ℓ. remove(ℓ,Top, HP, tid) (4)

In addition to the stack and the HP array, the popped nodes that are accessible
from the hazard pointers should be viewed as shared resources as well. We use
opset(Top, HP, S, O) in (5) to iterate these shared nodes, where O is the set of
pointers pointing to these nodes and S is the set of threads.

opset(Top, HP, ∅, ∅)
def
= true (5)

opset(Top, HP, {tid} ⊎ S, O)
def
=

(∃ℓ. remove(ℓ, Top, HP, tid) ∧ ℓ ∈ O ∧ opset(Top, HP, S, O − {ℓ}))
∨ (not rem(Top, HP, tid) ∧ opset(Top, HP, S, O))

The invariant I below specifies all three parts of the shared resources. I is a
last-state-precise assertion. The domain of the shared resource depends on the
historical information whether nodes are popped before or not.

I
def
= ∃O. opset(Top, HP, [1..th num], O)

∧ (Ihp(HP) ∗ ∃A.stack(Top, A) ∗ (⊛ℓ∈O. ℓ 7→ , )) (6)

Below we characterize the meaning of hazard pointers. ishazard(ℓ, Top, HP, tid)
says HP[tid] contains a “confirmed” hazard pointer ℓ, i.e. ℓ was once the top of
the stack in history and the thread tid has not updated the Top pointer ever
since (though Top might have been updated by other threads). When the remover
thread invokes retireNode on the top node t, it scans the hazard pointers of
all other threads and make sure that ishazard(t, Top, HP, tid) does not hold for
each non-remover thread tid. This is specified by hazfree(t, Top, HP, tid), which
says that the node t has been popped by the thread tid and other threads no
longer treat it as a hazard node.

upd top(tid)
def
= ∃ℓ, ℓ

′
. (Top ; ℓ ⋉tid Top ; ℓ

′) ∧ ℓ 6= ℓ
′

ishazard(ℓ,Top, HP, tid)
def
= (7)

(HP+tid 7→ ℓ ∗ Top ; ℓ) ⊲
(

(HP+tid ; ℓ) ∧ ¬upd top(tid)
)

hazfree(ℓ, Top, HP, tid)
def
= (8)

remove(ℓ, Top, HP, tid) ∧ ∀tid′∈ [1..th num]. tid′ =tid ∨ ¬ishazard(ℓ,Top, HP, tid′)



Pop
tid

def
= ∃ℓ, ℓ′. ⊖ ((Top ; ℓ) ∗ (HP+tid 7→ ℓ) ∗ (ℓ 7→ , ℓ′) ∗ List(ℓ′, , ))

∧((Top 7→ ℓ ⋉tid Top 7→ ℓ′) ∗ Id) (line 10)

Retiretid
def
= ∃ℓ. ⊖ hazfree(ℓ, Top, HP, tid)

∧ (((HP+tid 7→ ℓ ∗ ℓ 7→ , ) ⋉tid HP+tid 7→ null) ∗ Id) (line 14)

Reset HPtid

def
= ⊖not rem(Top, HP, tid)

∧ ((HP+tid 7→ ⋉tid HP+tid 7→ ) ∗ Id) (line 06)

Pushtid

def
= (Top 7→ ℓ ⋉tid (Top 7→ ℓ′ ∗ ℓ′ 7→ , ℓ)) ∗ Id (line 15 in Fig. 1)

Gtid

def
= (Retiretid ∨ Pop

tid
∨ Pushtid ∨ Reset HPtid ∨ Id) ∧ (I ⋉ I)

Rtid

def
=

∨

tid’∈[1..th num]∧tid6=tid’
Gtid’

Fig. 10. Transitions over Shared Resources, and R-G Specifications

The call to retireNode is crucial. As we will show below, it ensures that
a confirmed hazard pointer cannot be a dangling pointer, and a popped node
pointed by any confirmed hazard pointers cannot show up on the stack again
(thus the ABA problem is avoided).

Verification of the Algorithm. We first define in Fig. 10 all the operations
over the shared data structure, and show which line of the code makes the
corresponding transition (read-only operations are simply Id transitions and are
omitted). Pop

tid
pops the top node from the stack. It requires that the hazard

pointer point to the top of the stack. Retiretid sets the value of HP[tid] into
null, knowing that the popped node is no longer a hazard node. Then the node
ℓ is converted logically from shared resource to private. Reset HPtid resets the
hazard pointer when the thread tid fails to pop a node. Pushtid pushes a private
node onto the stack.

We also define the rely (Rtid) and guarantee (Gtid) of the thread tid. Here
I (defined in (6)) is used to fence the domain of all possible actions. It is easy to
see fence(I, Rtid) and fence(I, Gtid) are satisfied. Next we show some key trace
invariants derivable from ⊟(Rtid ∨ Gtid). They are used when the inv rule is
applied. Also they show the key intuition of the algorithm.

Invariant 1. This invariant ensures that a node pointed by a hazard pointer is
either on the stack or in the set O, so it is safe to dereference a hazard pointer.

∀ℓ, tid, A,O. ishazard(ℓ, Top, HP, tid) ∧ opset(Top, HP, [1..th num], O)
∧(stack(Top, A) ∗ true) ∧ ℓ 6= null ⇒ ℓ∈A ∨ ℓ∈O

Invariant 2. If a thread tid once held a hazard pointer pointing to the top of
the stack, and the top node on the stack was popped by other threads, then the
node will not be on the stack again as long as tid’s HP entry is not changed.
This invariant ensures that there are no ABA problems.

∀ℓ, A, A′, tid.
(

(ishazard(ℓ, Top, HP, tid) ∧ (stack(Top, A) ∗ true)) ⊲ HP+tid ; ℓ
)

∧(stack(Top, A′) ∗ true) ∧ ℓ 6= null ∧ ℓ 6∈ A ⇒ ℓ 6∈ A′



POPtid(ℓ, n, ℓ′)
def
= ⊖((Top ; ℓ) ∗ (ℓ 7→ n, ℓ′) ∗ List(ℓ′, , ))

∧ ((Top 7→ ℓ ⋉tid Top 7→ ℓ′) ∗ Id)
pop(){

{ HP+tid 7→ null
I
}

01 local done, next, t, t1;

02 done := false;

{ HP+tid 7→ null
I
} ∧ ¬done}

{ not rem(Top, HP, tid)
I
∧ ¬done}

loop invariant:

{ not rem(Top, HP, tid)
I
∧ ¬done

∨ ∃n, ℓ′.♦− POPtid(t, n, ℓ′) ∧ (remove(t, Top, HP, tid) ∗ (t 7→ n, ℓ′))
I
∧ done}

03 while (!done){

{ not rem(Top, HP, tid)
I
}

04 <t := [Top]>;

05 if (t == null) return null;

06 <HP[tid] := t>;

{∃ℓ. not rem(Top, HP, tid) ∧ HP+tid 7→ ℓ
I
∧ t = ℓ ∧ ℓ 6= null}

07 <t1 := [Top]>; Apply atom-r and atom

{∃ℓ, ℓ′. not rem(Top, HP, tid) ∧ (HP+tid 7→ ℓ ∗ Top 7→ ℓ′)
I
∧ t=ℓ ∧ ℓ 6=null ∧ t1=ℓ′}

{∃ℓ, ℓ′. ℓ = ℓ′ ⇒ ishazard(ℓ, Top, HP, tid)
I
∧ t = ℓ ∧ ℓ 6= null ∧ t1 = ℓ′}

08 if (t == t1){

{∃ℓ. ishazard(ℓ, Top, HP, tid)
I
∧ t = ℓ ∧ ℓ 6= null}

Apply inv with Invariant 1

{∃ℓ, n, ℓ′. ishazard(ℓ, Top, HP, tid) ∗ ℓ 7→ n, ℓ′
I
∧ t = ℓ}

09 <next := t.Next>;

{∃ℓ, n, ℓ′. ishazard(ℓ, Top, HP, tid) ∗ ℓ 7→ n, ℓ′
I
∧ t = ℓ ∧ next = ℓ′}

10 <done := CAS(&Top, t, next)>; Apply inv with Invariant 2
11 }

12 }

{ ∃n, ℓ′.♦− POPtid(t, n, ℓ′) ∧ (remove(t, Top, HP, tid) ∗ (t 7→ n, ℓ′))
I
}

13 retireNode(t); Apply frame and frameT

{ ∃n, ℓ′.♦− POPtid(t, n, ℓ′) ∧ (hazfree(t, Top, HP, tid) ∗ (t 7→ n, ℓ′))
I
}

14 <HP[tid] := null>; Apply atom-r and atom

{∃n, ℓ′. ♦− POPtid(t, n, ℓ′)
I
∗ (t 7→ n, ℓ′)}

15 return t;

{ ♦− List(null, nil)
I
∧ t = null ∨ ∃n, ℓ′. ♦− POPtid(t, n, ℓ′)

I
∗ (t 7→ n, ℓ′)}

}

Fig. 11. Verification of pop



Ithp
def
= (Top 7→ ) ∗ Ihp(HP) IrN

def
= remove(t, Top, HP, tid) ∧ Ithp

selfornothazard(i)
def
= ∀tid′ ∈ [1..i−1]. tid′ =tid ∨ ¬ishazard(t, Top, HP, tid′)

IrN

retireNode(t){

{IrN}
16 local i, t’;

17 i := 1;

loop invariant: {i ≤ th num+1 ∧ selfornothazard(i-1)}
18 while(i<=th_num){

19 if (i != tid){

20 <t’ := HP[i]>;

21 if (t ’!= t) {

{♦− (∃ℓ.HP+i 7→ ℓ ∧ (i 6= tid ∧ ℓ 6= t)) ∧ selfornothazard(i-1) ∧ i ≤ th num}
Apply inv with Invariant 3

{selfornothazard(i) ∧ i ≤ th num}
22 i := i+1;

23 }

24 }else i:= i+1;

25 }

{selfornothazard(th num+1)}

{ hazfree(t, Top, HP, tid)
Ithp

}

}

Fig. 12. Verification of retireNode

Invariant 3. This invariant justifies the retireNode procedure. If the thread tid

popped a node ℓ and its HP entry points to the node, then for all other thread
tid’ its hazard pointer cannot point to the node and becomes a confirmed
hazard pointer again if it was set to point to a different node (ℓ′) in history.

∀ℓ, ℓ′, tid, tid′.
(

remove(ℓ, Top, HP, tid) ∧ (HP+tid′ ; ℓ′) ∧ ℓ′ 6= ℓ

⊲ HP+tid ; ℓ

)

⇒ ¬ishazard(ℓ, Top, HP, tid′)

We show the proof sketch for pop in Fig. 11. Here p
I

is used as a shorthand

for (p ∗ true)∧ I. The precondition of pop requires that the invariant I hold over
the shared resources, and that the calling thread’s HP entry be initialized to
null. The post-condition says I holds at the end; the stack was either empty or
the node t was popped out of the stack and is now part of the local resource of
the calling thread. The proof sketch for retireNode is given in Fig. 12.

Most part of the proof simply follows the rules of the logic. The interesting
part is that the specification of retireNode does not mention the linked list and
the nodes in opset. Neither does it need to know that the pop operation has been
done (∃n, ℓ′.♦− POPtid(t, n, ℓ′)). The knowledge can be added back by applying
the frame and frameT rules respectively before we compose retireNode with
pop (see Fig. 11). The push procedure has nothing to do with hazard pointers,
thus the proof is trivial and can be seen in the extended TR [4].



6 Related Work and Conclusions

Assume-Guarantee (A-G) reasoning [12, 16] often views a concurrent program
as an “invariant maintainer” instead of a “predicate transformer” [9], especially
for safety verification. With this view, sequential composition of programs seems
always trivial and is rarely discussed in previous work on A-G reasoning.

R-G reasoning [8], on the other hand, decomposes specifications into program
invariants (R and G) and Hoare-style pre- and post-conditions, which gives us
a “predicate transformer” view of programs. With this view, sequential compo-
sition of programs (C1; C2) is no longer trivial. For instance, to use the post
condition q of C1 as the pre-condition of C2 as in Hoare Logic, we need to
ensure the stability of q. Our logic is an extension of R-G reasoning. We take
this “predicate transformer” view of programs, and try to spell out the details
of the verification step associated with each program construct. Also, our logic
successfully combines separation logic and temporal reasoning, which gives us
better modularity. The two different frame rules in our logic reflect the frame
properties over space (program states) and time respectively.

Gotsman et al. [5] introduced temporal operators in RGSep [19] to reason
about liveness properties of non-blocking algorithms. They do not use any past
tense operators. Their temporal operators were only used in their rely and guar-
antee conditions, but not in the pre- and post-conditions. Since the frame rule
over R and G was not used there, the interoperability between temporal opera-
tors and separation logic operators was not discussed.

Parkinson et al. [14] used CSL to verify safety of the same stack algorithm
we verified here. The specifications makes heavy uses of history variables. We
believe that our specifications reflect the intuition of the algorithm more directly.
Vafeiadis [18] applied RGSep to verify several non-blocking stack algorithms,
which all rely on garbage collectors to avoid the ABA problem. It is unclear how
the specification of Michael’s stacks would look like in RGSep.

Conclusion. In this paper we have proposed a new program logic HLRG, which
combines R-G reasoning with past tense temporal assertions to reason about
optimistic concurrency algorithms. Our new logic supports modular verification,
including the frame rules over both the separation logic and temporal operators.
We have verified Michael’s lock-free stack with hazard pointers and show that our
history logic can directly capture the high-level intuition about the algorithm.

Acknowledgments. We thank anonymous referees for their comments on this
paper. Ming Fu and Yong Li are supported in part by China Scholarship Council
and by National Natural Science Foundation of China under grant No. 90718026.
Much of this work was done during their visits to Yale University in 2009-2010.
Zhong Shao is supported in part by NSF grants CNS-0915888, CNS-0910670,
and CCF-0811665. Xinyu Feng is supported in part by National Natural Science
Foundation of China under grant No. 90818019.



References

[1] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In Proc. 20th Int’l
Symp. on Distributed Computing (DISC’06), pages 194–208, 2006.

[2] X. Feng. Local rely-guarantee reasoning. In Proc. 36th ACM Symp. on Principles
of Prog. Lang., pages 315–327. ACM Press, Jan. 2009.

[3] X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent separa-
tion logic and assume-guarantee reasoning. In Proc. 16th European Symposium on
Programming (ESOP’07), volume 4421 of LNCS, pages 173–188. Springer-Verlag,
March 2007.

[4] M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang. Reasoning about optimistic con-
currency using a program logic for history. Technical Report YALEU/DCS/TR-
1428, Dept. of Computer Science, Yale University, New Haven, CT, June 2010.
http://flint.cs.yale.edu/publications/roch.html.

[5] A. Gotsman, B. Cook, M. J. Parkinson, and V. Vafeiadis. Proving that non-
blocking algorithms don’t block. In Proc. 36th ACM Symp. on Principles of Prog.
Lang., pages 16–28. ACM, 2009.

[6] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, 1991.

[7] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support
for lock-free data structures. In Proc. 20th Annual Int’l Symp. on Computer
Architecture (ISCA), pages 289–300, 1993.

[8] C. B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM Trans. on Programming Languages and Systems, 5(4):596–619, 1983.

[9] L. Lamport and F. B. Schneider. The “Hoare Logic” of CSP, and all that. ACM
Trans. Program. Lang. Syst., 6(2):281–296, 1984.

[10] O. Lichtenstein, A. Pnueli, and L. D. Zuck. The glory of the past. In Proc. Conf.
on Logic of Programs, volume 193 of LNCS, pages 196–218. Springer, 1985.

[11] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst., 15(6):491–504, 2004.

[12] J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Trans. Software
Eng., 7(4):417–426, 1981.

[13] P. W. O’Hearn. Resources, concurrency and local reasoning. In Proc. 15th Int’l
Conf. on Concurrency Theory (CONCUR’04), pages 49–67, 2004.

[14] M. Parkinson, R. Bornat, and P. O’Hearn. Modular verification of a non-blocking
stack. In Proc. 34th ACM Symp. on Principles of Prog. Lang., pages 297–302.
ACM Press, Jan. 2007.

[15] M. J. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in hoare logics.
In Proc. 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06),
pages 137–146. IEEE Computer Society, August 2006.

[16] A. Pnueli. In transition from global to modular temporal resoning about programs.
In K. R. Apt, editor, Logics and Models of Concurrent Systems, NATO ASI Series,
pages 123–144. Springer-Verlag, 1984.

[17] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proc. 17th Annual IEEE Symposium on Logic in Computer Science (LICS’02),
pages 55–74. IEEE Computer Society, July 2002.

[18] V. Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, Computer
Laboratory, University of Cambridge, Cambridge, UK, July 2007.

[19] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and separation logic.
In Proc. 18th Int’l Conf. on Concurrency Theory, pages 256–271, 2007.


