
A Practical Verification Framework for
Preemptive OS Kernels ?

(Technical Report)

Fengwei Xu, Ming Fu??, Xinyu Feng,
Xiaoran Zhang, Hui Zhang, and Zhaohui Li

University of Science and Technology of China

Abstract. We propose a practical verification framework for preemptive
OS kernels. The framework models the correctness of API implementa-
tions in OS kernels as contextual refinement of their abstract specifi-
cations. It provides a specification language for defining the high-level
abstract model of OS kernels, a program logic for refinement verifica-
tion of concurrent kernel code with multi-level hardware interrupts, and
automated tactics for developing mechanized proofs. The whole frame-
work is developed for a practical subset of the C language. We have
successfully applied it to verify key modules of a commercial preemptive
OS µC/OS-II [2], including the scheduler, interrupt handlers, message
queues, and mutexes etc. We also verify the priority-inversion-freedom
(PIF) in µC/OS-II. All the proofs are mechanized in Coq. To our knowl-
edge, our work is the first to verify the functional correctness of a prac-
tical preemptive OS kernel with machine-checkable proofs.

1 Introduction

Verifying OS kernels has long been recognized as an important but also extremely
challenging task. There have been exciting efforts for OS kernel verification [4,
16, 29, 13] in recent years, but most of them have no or limited support of kernel-
level preemption, which allows tasks to be preempted even in kernel mode. This
limitation restricts their applicability to real-time systems, where preemptive
multitasking is indispensable to achieve real-time guarantees.

Preemptive kernels require explicit invocation of schedulers inside interrupt
handlers and careful interrupt management in the kernel code, which make the
kernel highly concurrent and complex. In this paper we propose a verification
framework for preemptive OS kernels, and show its application in verifying key
modules of µC/OS-II [2], a commercial preemptive real-time multitasking kernel
for microprocessors and microcontrollers. The verification is fully mechanized
in Coq [1]. To our knowledge, it is the first verification of (key modules of) a
preemptive OS kernel with machine-checkable proofs. The key contribution of the

? This work is supported in part by grants from National Natural Science Foundation
of China (NSFC) under Grant Nos. 61103023, 61229201, 61379039 and 91318301.

?? corresponding author (fuming@ustc.edu.cn)

work is to adapt existing theories on interrupt verification [11] and contextual
refinement of concurrent programs [18, 20, 27, 26], and integrate them into a
framework for real-world preemptive OS kernel verification. Specifically, our work
makes the following new contributions:

First, we formulate and verify the correctness of the APIs of OS kernels
as contextual refinement between their implementations and specifications. Al-
though refinement approaches have been applied in earlier work on OS kernel
verification [4, 16, 13], we believe our work is the first to explicitly specify and
prove contextual refinement for APIs of a preemptive OS kernel, following recent
progress on refinement verification of concurrent programs [18, 20, 27, 26]. As we
explain in Sec. 2.2, contextual refinement not only serves as a very strong notion
of functional correctness of system APIs, but also allows us to prove properties
based on the more abstract API specifications and then carry it down to the
level of concrete implementations, which makes the verification much simpler
than doing proofs directly at the concrete level.

Second, we provide a simple modeling language for specifying kernel prim-
itives. The language strives for balance between abstraction and expressiveness
for scheduling. On the one hand, we want the specification to abstract away
implementation details. On the other hand, it should provide enough details so
that many important properties can be specified at the abstract specification
level. Our modeling language provides an abstract sched command, allowing
us to specify explicitly when the scheduler is invoked in synchronization primi-
tives or interrupt handlers. Semantics of sched is parameterized over abstract
scheduling policies (e.g., priority-based or round-robin). Expressiveness about
these details are necessary to specify system-wide scheduling properties.

Third, we propose a program logic for refinement verification of concurrent
kernel programs. The logic supports multi-level nested hardware interrupts and
configurable schedulers. It extends concurrent separation logic [22] (CSL) with
relational assertions that relate program states at the implementation and the
specification levels, as in Liang et al. [18, 20]. It also assigns ownership-transfer
semantics to interrupt management operations and verify multi-level hardware
interrupts in a realistic setting. Different from traditional Hoare-style program
logics, whose soundness ensures the semantic interpretation of Hoare-triples,
our logic explicitly establishes contextual refinement, which is more useful for
establishing abstractions for system APIs, as explained above.

Fourth, our framework is developed for a practical subset of C. It has been
successfully applied to verify key APIs of µC/OS-II [2], including the timer in-
terrupt handler (and a pseudo interrupt handler to demonstrate the support of
multi-level interrupts), the scheduler, the time management, and four synchro-
nization mechanisms: message queues, mail boxes, semaphores, and mutexes. It
is worth noting that, unlike existing works [4, 16, 29, 13] that are focused on
kernels newly developed with verification in mind, we take a commercial system
developed by an independent third-party and verify the code with minimum mod-
ification, which demonstrates the generality and applicability of our framework.

Fifth, we also specify and verify priority inversion freedom (PIF) of µC/OS-II.
PIF is a crucial property for real-time systems and is worth verifying in its own
right. Moreover, since the specification and verification are done at the level of
the abstract model (i.e., specifications) of the kernel, they also help validate our
model of system APIs. As we explain above, many important properties cannot
be specified if the model is too weak or overly abstract.

Coq proofs are available at

http://staff.ustc.edu.cn/~fuming/research/certiucos.

2 Background and Overview of Our Work

2.1 Preemptive OS Kernels and Interrupts

In a preemptive OS, execution of a task can be interrupted at any program point
(unless interrupts have been disabled) and the control flow can be switched to
a different task. To allow preemption, we need these two conditions: (1) en-
abling interrupts at the kernel level; and (2) invoking the scheduler and context
switching inside the interrupt handler.

As shown in Fig. 1, execution of Task A is interrupted and the control is
switched to the interrupt handler (step (1)). Instead of returning to Task A di-
rectly when the interrupt request has been handled, we may execute the context
switch routine (step (4)), which switches the control to another Task B. If we ab-
stract away the interrupt handler, we say the execution of Task A is preempted
by Task B in this case. Note that if we disallow one of the above conditions, the
only way to switch the control from Task A to task B is to let Task A volunteer
to execute switch in its code (such as step (11)), resulting in a non-preemptive
concurrency model.

Interaction between tasks and hardware interrupts. As we can see, interrupt
handling and management are indispensable in preemptive OS kernels. Below
we also give a simplified overview of the interrupt mechanism in x86 systems
(based on the Intel 8259A interrupt controller).

The CPU has a flag bit IF indicating whether interrupts are enabled or not.
The cli/sti instruction clears/sets the bit to disable/enable interrupts. In 8259A
there is a register isr, each bit of which corresponds to a hardware interrupt
and records if the interrupt is being served or not. Different priority levels are
assigned to different sources of interrupts, with level-0 being the highest. When
an interrupt request comes, we check IF and isr. If the interrupts are enabled
and there is currently no interrupt of higher or the same priority being served,
the request will be served. The corresponding bit in isr is set to 1 and the control
jumps to the corresponding interrupt handler, shown as step (1) in Fig. 1.

On the invocation of the interrupt handler, the CPU flags (including the IF

bit) are saved on the stack, and interrupts are disabled automatically. If the
programmer enables interrupts again inside the handler, the interrupt hander
could be further interrupted by interrupt requests with higher priorities (see

http://staff.ustc.edu.cn/~fuming/research/certiucos

switch

iret

iret

Handler 1 Handler 0Task A

sti

Handler 1

Handler 1sti

eoi

iret

iret

Task B

switch

cli

cli

switch

Fig. 1. Tasks and Multi-level Interrupts

step (2), where the level-0 interrupt has a higher priority than level-1 interrupt),
causing nested interrupts.

The interrupt handler returns to the program being interrupted using iret
(step (3)), which also recovers the flags (including the IF bit). Before the handler
returns, we need to execute eoi . The command sends an “end of interrupt”
signal to the interrupt controller, which clears the corresponding bit in isr.
After eoi , if the interrupt is enabled (IF = 1), the interrupt handler could be
further interrupted by interrupts at a lower or the same level (see step (6)).

Overview of µC/OS-II. µC/OS-II is a commercial preemptive real-time multi-
tasking OS kernel developed by Micrium [2]. The kernel has 6000+ lines of C
code and 300+ lines of assembly. It allows a fixed number of tasks, multi-level
interrupts, and preemptive priority-based scheduling. The system APIs include
“semaphores; event flags; mutual-exclusion semaphores that eliminate unbound-
ed priority inversions; mailboxes; message queues; task, time and timer manage-
ment; and fixed sized memory block management” [2]. µC/OS-II is developed for
microprocessors and microcontrollers, and it does not support virtual memory.
It has been deployed in many real-world safety critical applications, including
avionics (e.g., the Mars Curiosity Rover) and medical equipments.

2.2 Overview of the Verification Framework

An OS kernel hides details of the underlying hardware and provides an abstract
programming model for application-level programmers. The implementation of
the kernel must ensure that behaviors of user applications in the real machine
are consistent with their behaviors under the abstract model [14]. Thus the OS
verification can be reduced to verifying refinement between the concrete and
abstract programming models.

Contextual refinement as correctness. We consider three entities, the application
A, the abstract specifications of the system APIs and interrupt handlers O, and
their concrete implementations O. When system calls are made or interrupts

C Subset Low-Level Assembly
 Primitives

High-Level Abstract
 Statements

Low-Level Small-Step Operational Semantics
 with Context Switch and Interrupts

The Low-Level Language

The High-Level Language

High-Level Small-Step Operational Semantics
 with Configurable Schedulers

Refinement-Based Program Logic Contextual Refinement

A.Modeling of OS Kernels

Fig. 2. Structure of the Verification Framework and µC/OS-II Verification

are handled, routines in O are invoked in the real execution, while in the pro-
grammers’ mind those in O are invoked instead at the abstract level. Then the
correctness of OS kernels requires O refines O under all contexts A:

∀A.JA[O]K ⊆ JA[O]K

where J K maps a program P to the set of its observable behaviors. It says that,
for all applications, executing the concrete code O does not have more observable
behaviors than executing the abstract version O. In this paper, observable be-
haviors are defined as finite prefixes of execution traces consisting of observable
events, following Liang et al. [18].

Contextual refinement is a very strong notion of functional correctness of
system APIs since it quantifies over all applications. Moreover, it makes verifica-
tion of system-wide properties simpler. For instance, if we want to verify certain
property Φ about a whole system A[O], i.e., Φ holds over every trace in JA[O]K,
we could prove that it holds over every trace in the superset JA[O]K instead.
Proofs at the abstract level could be much simpler than the concrete level.

The whole verification framework. Figure 2 shows the structure of our verifica-
tion framework. To model OS kernels and applications, we introduce two lan-
guages (in block A), the low-level language for the concrete code implementation
and the high-level language for the abstract specification. Above them we have
a program logic (in block B) that allows us to prove the low-level kernel imple-
mentation contextually refines the high-level specifications. The framework also
provides a set of Coq tactics (in block C) to automatically generate and prove

(Addr) a ∈ Int32 (Ident) id ∈ Z
(FName) f ∈ Z (Integer) k ∈ Int32

(Type) τ ::= Tvoid |Tint32 |Tptr(τ) |Tarray(τ, n) |Tstruct(id,D) | . . .
(OpVal) v̂ ::= ⊥ | v (Value) v ::= Vundef |Vnull |Vint(k) |Vptr(a)

(ValList) v̄ ::= nil | v :: v̄ (ExprList) ē ::= nil | e :: ē

(TypeList) T ::= nil | τ ::T (DeclList) D ::= nil | (id, τ) ::D
(UOP) uop ::= ∼ | ! | . . . (BOP) bop ::= + | − | >> | << |& | . . .
(CExpr) e ::= x | k | ∗ e |&e | e.id | e[e] | (τ)e | uop e | e bop e

(CltStmts) d ::= e=e | f(ē) | d; d | if (e) d else d |while (e) d | return e |print e | . . .
(CltFDef) cfd ::= (τ,D1,D2, d) (CltCode) A ::= {f1 cfd1, . . . , fn cfdn}

Fig. 3. The Language for Applications

verification conditions. The µC/OS-II modules certified in this framework are
shown in block D. Below we give details of some of the building blocks.

3 Modeling of the Kernel

As explained above, the correctness of OS kernels is formalized based on three
entities — user applications A, the concrete implementation O, and the abstract
specification O. In this section we introduce the programming (model) languages
for the three entities.

3.1 The Low-Level Language

The low-level language consists of two parts for implementations of user appli-
cations and OS kernels, respectively.

Application language. The application language is shown in Fig. 3. It is a subset
of the C language consisting of function calls, pointer operations (except pointer
arithmetics), arrays, structs, bit operations, etc. The application code A maps
function names to their function bodies. The function definition cfd for clien-
t consists of the type of the return value, the declaration of parameters, the
declaration of local variables and the statements of the function body.

The command f(ē) calls the function f , which could be either an application
function in A or an OS API (in O at the low-level or in O at the high-level, as
we explain below).

We use k for 32-bit integers and a for memory addresses (pointers). A value
v is either undefined, null, a 32-bit word value or a pointer.

The language supports rich C data types, including the type for the void
type(Tvoid), the type of “int”(Tint32), the type of “pointers” (Tptr(τ)), the
type of “array” (Tarray(τ, k)) and the type of “struct” (Tstruct(id,D)),etc..

(LPrim) ι ::= switch x | encrt | excrt | eoi k | iext | . . .
(LStmts) s ::= d | ι | s; s |while (e) s | if (e) s else s

(ItrpCode) θ ::= [s0, . . . , sN−1] (LFunDef) ofd ::= (τ,D1,D2, s)

(ProgUnit) η ::= {f1 ofd1, . . . , fn ofdn}
(LOSCode) O ::= (ηa, ηi, θ) (LProg) P ::= (A,O)

Fig. 4. The Languages for Kernel Impl.

(Memory) M ∈ Addr⇀ Vaule (SymTable) G,E ∈ Var⇀ Addr

(CState) ∆ ::= (G,Π,M) (SymTblSet) Π ::= {t1 E1, . . . , tn En}
(Cont) K ::= (κe, κs) (ExprCont) κe ::= ◦ | . . .
(StmtCont) κs ::= • | s · κs | s · κs | (c, κe, E)·κs | (f, v̄, ē) · κs | (f s E) · κs | . . .
(CurEval) c ::= e | s | s | fexec(f, v̄) |alloc(v̄,D) | skip | v | . . .
(TaskId) t ∈ Addr (TaskCode) C ::= (c,K)

(CMem) m ::= (G,E,M) (TaskPool) T ::= {t1 C1, . . . , tn Cn}

Fig. 5. The Common States

An expression e follows the syntax of the C programming language. It is
either a constant integer, a program variable, memory reference, deference or
standard arithmetic or logical operations over expressions.

A statement d is either an assignment statement, function call statements, a
sequence of statements, a branch statement, a loop statement, a return statement
or an output statement print. The language is reasonably practical because it
has been used to implement an executable operating system kernel µC/OS-II.
The output command print e generates observable event, which is used to define
observable event traces needed in our definition of refinement.

Note that the correctness of OS kernels are independent of the implemen-
tation language of A. Here we pick the C language for A to simplify the for-
malization because the applications and the kernel are now implemented in the
same language and we do not have to consider the interaction between different
languages when defining the whole system (A[O]) behaviors.

Low-level language for OS kernels. Figure 4 shows the low-level language for
the concrete implementation of OS kernels. Usually the kernels are implemented
in C with inline assembly. However, giving semantics directly to C with inline
assembly requires us to expose stacks and registers, which makes the semantics
overly complex. To avoid this problem, we extend the C statements with assem-
bly primitives ι to encapsulate the assembly code. Semantics of these primitives
will be given below.

switch x switches to the target task x. encrt enters a critical region by
disabling interrupts. It also saves the old IF onto the stack to allow nested
critical regions. Note we use ie to model the IF flag and abstract away other
bits in the hardware EFLAGS register. excrt exits the current critical region by

popping the stack to recover ie. Since we hide stacks in our state model, we use
an abstract stack cs to save the historical ie bits (see Fig. 6, which is explained
below). eoi k clears the k-th bit in isr, indicating that the k-th interrupt is no
longer in service. iext enables interrupts and returns to the interrupted program.

The kernel implementation O consists of the system API implementation ηa,
the internal functions ηi and the interrupt handlers θ. The internal functions are
called only by code in ηa or θ. θ is a sequence of N interrupt handlers, where N
is the maximum number of interrupts we support. The handler with the lower
identifier has the higher priority. Then a complete low-level program P is defined
as a pair of the application code A and the kernel code O.

Common machine states. As shown in Fig. 5, we present the common machine
states for the two levels. The memory M is modeled as a partial function from
addresses to values. The global symbol table G and the local symbol table E
map program variables to addresses. Note that we use a flat memory model to
simplify the presentation. The basic memory operations follow the block-based
memory model in CompCert [17]. Π maps the task identifiers to their local
symbol tables. ∆ consists of the global symbol table G, the set of local symbol
tables Π and the memory M .

We give small-step operational semantics at the two levels. For each step,
the processor picks the continuation of the current task and executes its current
command or expression. To model fine-grained concurrency, both commands and
expressions could be executed in multiple steps, where each step corresponds to
the granularity of a single machine instruction (as in CompCertTSO [24], but
we use the sequential consistent model instead of the x86-TSO memory model).

The expression and statement continuations are presented in Fig. 5. For the
expression continuations κe, they can be ◦ which means that there is nothing
left to be evaluated, or some other standard cases.

For the statement continuations κs, • means that there is nothing left to be
done. When the currently running task is interrupted, we use (c, κe, E)·κs to
save the execution context for the current task. Since the interrupt may happen
when evaluating an expression, we need to record the current evaluation c, the
expression continuation κe and the current local symbol table E for resuming the
execution context in the future. We use (f, v̄, ē) · κs to save intermediate results
of calculating function arguments. (f, s, E) · κs is used to save the context when
doing function calls.

We also introduce some runtime statements for defining the small-step op-
erational semantics. For instance, fexec(f, v̄) is an intermediate statement for
calling a function. alloc(v̄,D) is used to do memory allocations for local variables
and parameters in a function. More details about the usage of these statements
can be seen in Fig 8, where we give some key rules of operational semantics for
the low-level language.

Low-level machine states. The language is concurrent, with multiple continua-
tions (i.e., control stacks) in the state, each corresponding to a task. All tasks
share memory, but each has its own local variables and local interrupt states

(BitVal) b, ie ∈ {0, 1} (ISRReg) isr ::= [b0, . . . , bN−1]

(CrtStk) cs ::= nil | ie ::cs (ItrpStk) is ::= nil | k :: is

(ItrpTaskSt) δ ::= (ie, is, cs) (ItrpSt) π ::= {t1 δ1, . . . , tn δn}
(LOsFullSt) Λ ::= (∆, isr, π) (TaskLocalSt) σ ::= (m, isr, δ)

(LWorld) W ::= (P, T,∆,Λ, t)

Fig. 6. The Low-level Machine States

(see δ in Fig. 6, which is explained below). We also separate the program state
(including memory and variables) into two disjoint parts, one for the application
code A and the other for the kernel code O. The only way for A to access kernel
states is to call system APIs in O, and O cannot access application states.

As explained in Sec. 2.1, ie is a boolean flag used to turn on/off interrupts.
isr is a sequence of boolean flags, one for each interrupt. The stack cs records
the historical values of ie, which are pushed whenever the execution enters a
critical region. It is used to support nested critical regions. The task-local stack
is records the sequence of interrupts that interrupt the execution of this task. It is
auxiliary data introduced for verification purpose. Then the task-local interrupt
status δ is defined as a triple (ie, is, cs). π records the δ of each task. The kernel-
level state Λ consists of the general C state ∆, the global isr register and the set
π of task-local interrupt status.

The whole program configuration W now consists of the task pool T , the
client state ∆, the kernel state Λ, and the identifier t of the current task. Note
that W contains two pieces of ∆, one for user applications (clients), the other
inside Λ for the kernel. Separating the data into two parts prevents user applica-
tions from accessing kernel data. Applications trying to access data unavailable
in the client ∆ will trigger a runtime error in our operational semantics.

Low-level operational semantics. We give the low-level operational semantics
in Fig. 8. The low-level program steps denoted as “P ` W L +3W ′”, may
execute a regular command in a task (the Ptask rule), or execute switch x to
do context switch (the Psw rule), or be interrupted and transfer the control to
the corresponding interrupt handler (the Pitrp rule). When executing a regular
command in a task, it may either belong to the kernel (the TKernel rule) or
the client (the TClt rule).

The Ptask rule is used to lift task-local steps of the current task to program
steps. We use Λ|t to project the task-local data σ of t from Λ (σ defined in
Fig. 5), then the program configuration is updated according to the execution
of the task-local step. Here updTS(Λ, t, σ′) (defined in Fig.7) updates the local
data of t in Λ with the new σ′.

The assembly implementation of the context switch routine is abstracted into
the primitive switch x. It switches the execution from the current task to the
target task x, where x stores the task identifier. The Psw rule simply resets the
current thread identifier and updates the global variable OSTCBCur accordingly.

bκscc
def
=

⊥ if κs = •
κs if κs = (f, s, E) · κ′s
bκ′scc otherwise

bκsc
def
=

⊥ if κs = •
κs if κs = (c, κe, E)·κ′s
bκ′sc otherwise

f ⊥ g def
= dom(f) ∩ dom(g) = ∅ f] g def

=

{
f ∪ g iff f ⊥ g
undef otherwise

InOS(C, (A,O))
def
= ∃c, κs.C = (c, (, κs)) ∧ ((∃f.f ∈ dom(O.ηa]O.ηi)∧

(c = fexec(f,) ∨ bκscc = (f, ,) ·)) ∨ bκsc 6=⊥)

(G,Π,M)|t = (G,E,M)
def
= Π(t) = E

(∆, isr, π)|t = (m, isr, δ)
def
= ∆|t = m ∧ π(t) = δ

Λ′ = updTS(Λ, t, σ′)
def
= Λ′|t = σ′ ∧ ∀t′ 6= t.Λ′|t′ = Λ|t′

∆′ = updCS(∆, t,m′)
def
= ∆′|t = m′ ∧ ∀t′ 6= t.∆′|t′ = ∆|t′

JxK(G,E,M) = t′
def
= ∃a.(E(x) = a ∧M(a) = t′)∨

(G(x) = a ∧ x /∈ dom(E) ∧M(a) = t′)

JxK(t,((G,Π,M),isr,π)) = t′
def
= JxK(G,Π(t),M) = t′

((G,Π,M ′), isr, π) = updG(((G,Π,M), isr, π),OSTCBCur, t′)
def
=

∃a.G(OSTCBCur) = a ∧M ′ = M{a t′}

Fig. 7. Auxiliary Definitions

The Pitrp rule says that the task t can be interrupted by a level-k interrupt
request if ie is 1 (thus we are not in critical regions and cs must be nil) and there
is currently no interrupt of higher or the same priority being served, according
to isr. Then we switch the control to the interrupt handler θ(k), and saves the
execution context (c, κe, E) onto the statement continuation (see Fig. 8). We
also set the k-th bit of isr, clear the ie bit, and push k onto the is stack.

We use “P ` (C,∆, σ) L // (C ′, ∆′, σ′)” to define task-local semantics of
the assembly primitives for interrupt management. The TKernel rule means
to execute a kernel command. It checks whether it is executing the kernel code
using InOS(C,P) (defined in Fig.7 by checking the current continuation). The
TClt rule executes the client code. Here updCS(∆, t,m′) (defined in Fig.7)
updates the local data of t in ∆ with the new m′.

The assembly primitives ι except switch are all related to interrupts man-
agement and handling. To model their semantics, we introduce interrupt states
in the state model, as shown at Fig. 6. The global register isr is shared by all
tasks. It models the isr register in 8259A interrupt controller, as explained in
Sec. 2.1. In addition, there are local interrupt states δ for each task. It contains
a local copy ie of the IF flag in the EFLAGS register (see Sec. 2.1) recording
whether interrupts are enabled, a stack cs consisting of the historical values of
ie to support nested critical regions, and another stack is recording the sequence

P ` W L +3 W ′

Λ|t = σ P ` (C, σ,∆) L // (C′, σ′, ∆′)
T (t) = C T ′ = T{t C′} Λ′ = updTS(Λ, t, σ′)

P ` (T,∆,Λ, t) L +3 (T ′, ∆′, Λ′, t)
(Ptask)

T (t) = (switch x,K) JxK(t,Λ) = t′ Λ′ = updG(Λ,OSTCBCur, t′)

P ` (T,∆,Λ, t) L +3 (T{t (skip, K)}, ∆, Λ′, t′)
(Psw)

P = (A, (ηa, ηi, θ)) T (t) = (c, (κe, κs)) Λ|t = ((G,E,M), isr, (1, is, nil))
∀k′.k′ ≤ k → isr(k′) = 0 C′ = (θ(k), (◦, (c, κe, E)·κs)) T ′ = T{t C′}

σ′ = ((G, ∅,M), isr{k 1}, (0, k :: is, nil)) Λ′ = updTS(Λ, t, σ′)

P ` (T,∆,Λ, t) L +3 (T ′, ∆, Λ′, t)
(Pitrp)

P ` (C,∆, σ) L // (C′, ∆′, σ′)

InOS(C, P) P ` (C, σ) • L
� ,2 (C′, σ′)

P ` (C,∆, σ) L // (C′, ∆, σ′)
(TKernel)

¬InOS(C, (A, (ηa, ηi, θ))) ∆|t = m A] ηa ` (C,m) 7−−→ (C′,m′) ∆′ = updCS(∆, t,m′)

(A, (ηa, ηi, θ)) ` (C,∆,Λ) L // (C′, ∆′, Λ)
(TClt)

σ = (m, isr, (ie, is, cs)) σ′ = (m, isr, (0, is, ie ::cs))

P ` ((encrt, K), σ) • L
� ,2 ((skip, K), σ′)

(EnterCrt)

σ = (m, isr, (ie, is, ie′ ::cs)) σ′ = (m, isr, (ie′, is, cs))

P ` ((excrt, K), σ)) • L
� ,2 ((skip, K), σ′)

(exitcrt)

0 ≤ k < N σ = (m, isr, (ie, is, cs)) σ′ = (m, isr{k 0}, (ie, is, cs))

P ` ((eoi k,K), σ) • L
� ,2 ((skip, K), σ′)

(eoi)

σ = ((G,E,M), isr, (ie, k :: is, cs)) σ′ = ((G,E′,M), isr, (1, is, cs)) bκsc = (c, κe, E
′)·κ′s

P ` ((iext, (◦, κs)), σ) • L
� ,2 ((c, (κe, κ′s)), σ′)

(iret)

ηi ` (C,m) 7−−→ (C′,m′)

(A, (ηa, ηi, θ)) ` (C, (m, isr, δ)) • L
� ,2 (C′, (m′, isr, δ))

(KCstep)

η ` (C,m) 7−−→ (C′,m′)

η ` ((f(nil), (◦, κs)),m) 7−−−→ ((fexec(f, nil), (◦, κs)),m)
(Fn)

η ` ((f(e :: ē), (◦, κs)),m) 7−−−→ ((e, (◦, (f, nil, ē) · κs)),m)
(Fa)

η ` ((v, (◦, (f, v̄, (e :: ē)) · κs)),m) 7−−−→ ((e, (◦, (f, (v :: v̄), ē) · κs)),m)
(Feval)

η ` ((v, (◦, (f, v̄, nil) · κs)),m) 7−−−→ ((fexec(f, v :: v̄), (◦, κs)),m)
(FEnter)

η(f) = (τ,D1,D2, s) m = (G,E,M) m′ = (G, ∅,M)

η ` ((fexec(f, v̄), (◦, κs)),m) 7−−−→ ((alloc(v̄, rev(D1)++D2), (◦, (f, s, E) · κs)),m′)
(FAlloc)

η ` ((alloc(nil, nil), (◦, (f, s, E) · κs)),m) 7−−−→ ((s, (◦, (f, s, E) · κs)),m)
(FBody)

Fig. 8. The Low-level Operational Semantics

of interrupts that interrupt the execution of the task. The stack is is auxiliary
data introduced mainly for verification purposes. π records the δ of each task.

encrt enters a critical region by disabling interrupts (i.e., clearing the ie bit
using cli). It also saves the old ie onto the cs stack. excrt exits the critical region
by popping off the top value on cs and using it to restore ie (executing sti if the
value is 1).

Interrupt requests may arrive non-deterministically after each step if ie = 1.
A level-k request is served only if there is no request at higher or the same
level being served (i.e., ∀k′.k′ ≤ k → isr(k′) = 0). Then the processor clears
ie, sets isr(k) to 1, pushes the number k onto the logical stack is, saves the
execution context and the local variables onto the abstract control stack (i.e.,
the continuation), and finally jumps to the interrupt handler θ(k).

eoi k clears the k-th bit in isr, indicating that the k-th interrupt is no longer
in service. iext is an abstraction of the iret instruction. It resets the ie bit to 1
to enable interrupts, pops out the topmost interrupt number on the is stack, and
returns to the interrupted program. The iret rule pops the execution context
from the statement continuation, and sets the ie bit. We use bκsc defined in
Fig.7 to pop the execution context from the statements continuations.

In addition, we use “η ` (C,m) 7−−→ (C ′,m′)” to define the operational
semantics for common C steps. Here we only give the Fn ,Fa, Feval, FEnter,
FAlloc and FBody rules for executing a function call, other rules for standard
C semantics are in our Coq code and omitted here. When invoking a function,
it firsts uses the Fa rule to evaluate the expressions of function arguments.
Then the Feval rule is applied for evaluating the next expression. After all the
arguments are evaluated to a value list, we use FAlloc to allocate memory
blocks for local variables and arguments. Finally, we apply the FBody rule
to execute the function body after finishing local allocations. Note that the
dynamical statement fexec(f, v̄) is the execution boundary between client-steps
and and kernel-steps when client code invokes a kernel API.

Encoding C code of µC/OS-II in Coq. We do deep encoding of the code by
defining the abstract syntax tree of the C language (subset) as an inductive
datatype in Coq, and manually write the code as an expression of this type.
With the help of Coq notations, the syntactic representations of C code in Coq
look similar as the original C code. Actually the encoding could be done by
an automatic transformer. Figure 9 (b) shows our encoding in Coq for the C
source code of the scheduler of µC/OS-II (Fig. 9 (a)). All the code definitions
are located in the directory of our Coq source code “CertiOS/certiucos/code/”.

3.2 The High-Level Specification Language

Viewing from the aspect of application programmers, we model the OS kernel
as an extended C language with multi-tasking and system calls. As explained
above, the C language is used to implement user applications A, and the system
calls invoke an abstract version of system routines in O, which are implemented
using a simple specification language. Correspondingly, the low-level concrete

(a) The C code of Scheduler

(b) The Coq encoding of Scheduler

Fig. 9. C Source code vs. Coq encoding

representation of kernel states is modeled as algebraic abstract states at the
high level. This section presents the high-level language and its semantics.

As shown in Fig. 10, the whole high-level program P consists of the applica-
tion code A and the abstract specification of the kernel O. The application code
A is the same as in the low-level language (see Fig. 4). O contains the specifica-
tions ϕ for kernel APIs, ε for interrupt handlers, and χ for the scheduler. The
high-level program configuration W consists of the task pool T , the client state
∆, and the abstract kernel state Σ.

Programmers at this level have no control over interrupts (e.g., enabling
or disabling interrupts). Always enabled, interrupts are modeled implicitly as
abstract external events that may occur non-deterministically at any program
points. Handlers of the events are also specified as ε in O. At the high level an
incoming level-k event is always handled by executing ε(k).

(HStmts) s ::= sched | γ(v̄) |assert b | end v̂ | s1; s2 | s1+s2

(HAPISet) ϕ ::= {f1 s1, . . . , fn sn} (HEvtSet) ε ::= [s0, . . . , sN−1]

(HSched) χ ∈ HAbsSt→ TaskId→ Prop (HBExpr) b ∈ HAbsSt→ Prop

(HOSCode) O ::= (ϕ, ε, χ) (HProg) P ::= (A,O)

(HWorld) W ::= (P, T,∆,Σ)

Fig. 10. High-Level Spec. Language

(HAbsSt) Σ ::= {a1 Ω1, . . . ,an Ωn} (HDataNm) a ::= tcbls | ecbls | ctid | . . .
(HData) Ω ::= α |β | t | . . . (HEvtId) eid ∈ Addr
(HTCBLs) α ::= {t1 (pr1, ts1), . . . , tn (prn, tsn)}
(HECBLs) β ::= {eid1 ed1, . . . , eidn edn}
(Priority) pr ∈ int32 (WaitType) wt ::= mtx(eid) | tm | . . .
(WaitQ) Q ∈ nil | t ::Q (HStatus) ts ::= rdy |wait(wt, k)

(MtxOwner) w ::= ⊥ | (t, pr) (HECBData) ed ::= mutex(pr, w) | . . .

Fig. 11. The High-level Abstract Machine

The system APIs and interrupt handlers are specified as an abstract state-
ment s, which forms a simple but expressive specification language. sched does
scheduling. Its semantics is determined by the abstract scheduler specification
χ. As defined in Fig. 10, χ is a binary relation between abstract states and task
identifiers. That is, given an abstract state Σ (defined at the bottom of Fig. 10),
χ finds a related task identifier as the next task to execute. Note that χ is a re-
lation instead of a function, therefore the abstract scheduler does not have to be
deterministic. Since χ is provided as part of the kernel specification, the seman-
tics of sched in our language is configurable. Specifying details of the scheduling
policies (instead of using a more abstract non-deterministic scheduler that may
pick any task) allows us to specify and verify scheduling properties such as PIF
at the high level.

γ(v̄) is a meta-level relation (defined in Coq) that takes v̄ as arguments and
maps an abstract state to another. Users can instantiate it to specify any atomic
transitions over abstract states. assert b asserts that the predicate b holds
over the current abstract state. end v̂ represents the end of abstract APIs with
optional return values or interrupt handlers. s1; s2 and s1+s2 are statements for
sequential composition and non-deterministic choices respectively.

Abstract states. The kernel state is represented as the abstract state Σ at the
high level. As defined at Fig. 11, Σ is a mapping from names a to the abstract
data Ω. Here tcbls is the name for the high-level abstract TCB list α, which maps
task identifiers to abstract tasks, including the priority pr (a natural number),
the task status (ready, waiting, etc.) and so on, depending on the low-level
implementations. ctid is the name for the current task identifier t.

P ` W H +3 W′

Σ(ctid) = t T (t) = C T ′ = T{t C′}
P ` (C,∆,Σ) H // (C′, ∆′, Σ′)
P ` (T,∆,Σ) H +3 (T ′, ∆′, Σ′)

(Htask)

P = (A, (ϕ, ε, χ)) Σ(ctid) = t χ Σ t′

T (t) = (sched; s, K) T ′ = T{t (s, K)}

P ` (T,∆,Σ) H +3 (T ′, ∆,Σ{ctid t′})
(Schd)

Σ(ctid) = t T (t) = (c, (κe, κs)) T ′ = T{t (ε(k), (◦, (c, κe, ∅)·κs))}

(A, (ϕ, ε, χ)) ` (T,∆,Σ) H +3 (T ′, ∆,Σ′)
(Pevent)

P ` (C,∆,Σ) H // (C′, ∆,Σ′)

(s, Σ) • H
� ,2 (s′, Σ′)

P ` ((s, K), ∆,Σ) H // ((s, K), ∆,Σ′)
(InApi)

∆|t = m A ` (C,m) 7−−→ (C′,m′)
T ′ = T{t C′} ∆′ = updCS(∆, t,m′)

(A,O) ` (C,∆,Σ) H // (C′, ∆′, Σ)
(HTClt)

ϕ(f) = ω C = (fexec(f, v̄), K)

(A, (ϕ, ε, χ)) ` (C,∆,Σ) H // ((ω v̄,K), ∆,Σ)
(EnApi)

P ` ((end v,K), ∆,Σ) H // ((v,K), ∆,Σ)
(EndApi1)

P ` ((end , K), ∆,Σ) H // ((skip, K), ∆,Σ)
(EndApi2)

C = (end , (◦, (c, κe, ∅)·κs))
P ` (C,∆,Σ) H // ((c, (κe, κs)), ∆,Σ)

(EndEvt)

(s, Σ) • H
� ,2 (s′, Σ′)

γ v̄ Σ (v̂, Σ′) Σ ⊥ Σf dom(Σ(tcbls)) = dom(Σ′(tcbls))
dom(Σ) = dom(Σ′) Σ(ctid) = Σ′(ctid)

(γ(v̄), Σ ∪Σf) • H
� ,2 (end v̂, Σ′ ∪Σf)

(Prim)

b Σ Σ ⊥ Σf
(assert b, Σ ∪Σf) • H

� ,2 (end ⊥, Σ ∪Σf)
(Assert)

(end v̂; s, Σ) • H
� ,2 (s, Σ)

(s1, Σ) • H
� ,2 (s′1, Σ′)

(s1; s2, Σ) • H
� ,2 (s′1; s2, Σ

′)

(s1+s2, Σ) • H
� ,2 (s1, Σ) (s1+s2, Σ) • H

� ,2 (s2, Σ)

Fig. 12. The High-level Operational Semantics

void OSTimeDly (Int16u ticks) :
1 if (ticks > 0){

2 OS_ENTER_CRITICAL();

3 if((OSTCBCur->OSTCBStat==OS_STAT_RDY)&&

(OSTCBCur->OSTCBDly==0)){

4 OSRdyTbl[OSTCBCur->OSTCBY]=

OSRdyTbl[OSTCBCur->OSTCBY]& (OSTCBCur->OSTCBBitX);

5 if(OSRdyTbl[OSTCBCur->OSTCBY]==0){

6 OSRdyGrp= OSRdyGrp&(OSTCBCur->OSTCBBitY)}

7 OSTCBCur->OSTCBDly=ticks;

8 OS_EXIT_CRITICAL();

9 OSSched();

10 }else{ OS_EXIT_CRITICAL();} }

11 return;

OSTimeDly: sdly
def
= (γerr(ticks) + (γdly(ticks); sched))

γerr(ticks)
def
= λΣ, (v̂, Σ′).Σ = Σ′ ∧ ticks = 0

γdly(ticks)
def
= λΣ, (v̂, Σ′).ticks > 0 ∧ (∃t, pr.Σ(ctid) = t ∧Σ(tcbls)(t) = (pr, rdy)∧

Σ′ = Σ{tcbls {t (pr,wait(wt, ticks))}})

Fig. 13. Specification Code for OSTimeDly

wt represents the type of waiting, including waiting for a mutex mtx(eid)
and waiting for a duration tm etc.. ecbls is the name for the high-level abstract
event control block (ECB) list β, which maps the event identifiers to abstract
events, including abstract mutexes, abstract message queues and so on. The
abstract mutex can be formalized as mutex(pr, w), in which pr is the priority
of the mutex and w is a pair of task identifiers and priorities. ecbls is used to
implement mutexes. Note that the definition of the abstract state for ECB list
is not tied to our framework, which means different kernel implementations may
instantiate these abstract states with different settings.

Example of high-level specifications. We use sdly
def
= (γerr(ticks)+(γdly(ticks); sched)),

as shown in Fig. 13, to specify the system API “void OSTimeDly(Int16u ticks)”,
which delays the current task for the specified number of system ticks. The atom-
ic operation γerr(ticks) specifies the error case when ticks = 0. γdly(ticks) defines
the atomic behavior of updating the status of the current task from “ready” to
“waiting” with the duration set to ticks when ticks > 0, and the following sched
switches to another ready task, following the scheduling policy specified by the
abstract scheduler χ. Note that the exclusive conditions over ticks in γerr(ticks)
and γdly(ticks) make the non-deterministic choice statement deterministic. We
omit the definitions of γerr(ticks) and γdly(ticks) here.

As another example, below we show the abstract scheduler specification
χµC/OS-II for µC/OS-II. It requires that the selected task be ready and have
the highest priority among all the ready tasks.

χµC/OS-II
def
= λΣ, t.∃α, pr.Σ(tcbls) = α ∧ α(t) = (pr, rdy)∧

∀t′, pr′. (t 6= t′∧α(t′)=(pr′, rdy))→pr′≺pr

The High-level Operational Semantics. Figure 12 shows selected rules of the high-
level operational semantics, which are defined similarly as the low level. We use
P ` W H +3W′, P ` (C,∆,Σ) H // (C ′, ∆,Σ′) and (s, Σ) • H

� ,2 (s′, Σ′) to
represent the high-level program steps, the high-level task-steps, and the high-
level kernel-steps, respectively. The operational semantics rules for program-
steps correspond to an execution step of the abstract kernel specification, a step
of the sched command, a step to handle events (abstractions for interrupts) and
a step of client execution.

(Δ0,Σ0)

(Δ0,σ0) *

*(Δ1,Σ1)

(Δ1,σ1)

f(e) fexec(f,v)

*

(Δ2,Σ2)

(Δ2,σ2)
alloc

f(e) fexec(f,v)

 API’s spec.

API’s impl.

...

...

Client Kernel

INV INV INV

Fig. 14. Correspondence of Invoking APIs at two Levels

The high-level machine applies the Api rule to execute the specification code
of the function f . As shown in Fig.14, when the client invokes an API at two
levels, both the low-level and high-level machines first execute with the exactly
the same client-steps to the statement fexec(f, v̄). Then the low-level execution
first allocates memory for arguments and local variables and enters the concrete
function body of f as we explained before, while the high level enters the abstract
specification code. The InApi and EndApi rules are used to execute and return
from the abstract function body. The Evt and EndEvt rules are used for
responding the external events (corresponding to low-level interrupts) at the high
level. The HPrim and Assume rules give the semantics for two basic abstract
statements. The operational semantics of the sequential statements and non-
deterministic choice statements are standard.

3.3 OS Correctness

As we explain in Sec.2.2, the correctness of OS kernels can be defined in terms
of contextual refinement. Below we give its formal definition.

Definition 3.1 (OS Correctness). O vψ O iff
∀A,W,W.Match(ψ,W,W) =⇒ ((A,O),W) 4 ((A,O),W)

where ψ ∈ LOSFullSt→ HAbsSt→ Prop and

Match(ψ, (T,∆,Λ, t), (T,∆,Σ))
def
=

(t ∈ dom(T))∧ (ψ Λ Σ)∧ (t=Σ(ctid))∧ (dom(T)=dom(Σ(tcbls)))

(EvtTrace) ξ ::= nil | | ς ::ξ

LETr(P,W, ε)

P `W L +3 abort

LETr(P,W,)

P `W L +3 W ′ LETr(P,W ′, ξ)

LETr(P,W, ξ)

P `W L
ς +3 W ′ LETr(P,W ′, ξ)

LETr(P,W, ς ::ξ)

HETr(W, ε)

P `W H +3 abort

HETr(P,W,)

P `W H +3 W′ HETr(P,W′, ξ)
HETr((P,W), ξ)

P `W H
ς +3 W′ HETr(P,W′, ξ)

HETr(P,W, ς ::ξ)

(P,W) 4 (P,W)
def
= ∀ξ.LETr(P,W, ξ) =⇒ HETr(P,W, ξ)

Fig. 15. Event Trace Refinement

The low-level kernel code O refines its high-level abstract specifications O
with constraints ψ over initial kernel states, denoted as O vψ O, if and only if
for any client code A, low-level state W and high-level state W, ifW and W satisfy
certain consistency constraint (w.r.t. ψ), then the set of observable behaviors of
the low-level configuration ((A,O),W) is a subset of ((A,O),W) (i.e., (P,W) 4
(P,W), following the event trace refinement in [19]). The definition of (P,W) 4
(P,W) is given in Fig. 15 and will be explained below.

The constraint Match requires that: (1) initially W and W have the same
task pool T and client state ∆; (2) the current task t is in T ; (3) the low-level
kernel state Λ and the high-level abstract state satisfy ψ; (4) the current task
at the low level and the high level are the same; and (5) the set of tasks in the
abstract TCB list should be the same as those in the low-level task pool.

Event trace refinement for OS correctness. We give the definition of event trace
refinement in Fig 15. nil means a empty trace. A trace is a sequence of externally
observable events ς, and may end with a fault marker . LETr(P,W, ξ) means
ξ can be generated by low-level machine (P,W). HETr(P,W, ξ) means ξ can
be generated by high-level machine (P,W). (P,W) 4 (P,W) means that all the
observable event trace generated by the low-level machine (P,W) can also be
generated by high-level machine (P,W).

4 Relational Program Logic for Refinement Verification

In this section, we present a CSL-style relational program logic for refinement
verification. The logic uses relational assertions to prove refinement between
an implementation and its specification. It also follows the ownership-transfer
semantics in CSL to reason about multi-level hardware interrupts.

inc(){
int done=0, tmp;
while(!done){

tmp=cnt;
done=cas(&cnt,tmp,tmp+1) }

}

{cnt = N}
inc();
{cnt = N+1}

{∃N. cnt = N}
inc();
{∃N. cnt = N}

{cnt = CNT ∧ [|〈CNT++〉|]}
inc();
{cnt = CNT ∧ [|end|]}

(a) Implementation of inc (b) Wrong spec. (c) Weak spec. (d) Refinement spec.

Fig. 16. Specification of Concurrent Programs

4.1 Refinement of concurrent programs, and relational reasoning.

For concurrent programs, refinement establishes stronger functional correct-
ness than traditional Hoare triples. As an example, the function inc shown
in Fig. 16(a) increments the counter cnt. It may be called simultaneously by
concurrent tasks. Figure 16(b) gives pre-/post-conditions to specify inc, which
would be valid in a sequential setting and is sufficient to describe the function-
ality. However, they cannot be used in a concurrent setting because they are not
stable with respect to concurrent behaviors of other tasks. To make them stable,
we may need the specifications in Fig. 16(c), which is too weak to capture the
functionality.

Figure 16(d) gives a relational specifications to show that inc refines an ab-
stract operation 〈CNT++〉 [20], where 〈C〉 represents an atomic operation C. The
relational assertions specify three important entities, the concrete state (cnt),
the abstract state (CNT) and the abstract operation (〈CNT++〉) that the program
refines (which could be non-atomic in general [20]). The precondition requires
that initially cnt has the consistent value with its abstract counterpart CNT, and
the abstract operation that inc needs to refine is 〈CNT++〉. The postcondition
ensures cnt and CNT remain consistent and the remaining abstract operation
that needs to be refined is end (i.e., 〈CNT++〉 has been accomplished).

Our refinement proofs for OS kernels follow the same kind of relational rea-
soning, where the assertions now relate the concrete kernel state, the abstract
kernel state (Σ) and the abstract statement (s).

4.2 Relational Assertion Language

Figure 17 gives the relational assertion language, and its semantics is given in
Fig. 18.

(Asrt) p, q, r ::= emp | empE |x 7−→v | ISR(isr) | IE(ie) | IS(is) |CS(cs) | xky |χ.t
| a�Ω | [|s|] | p ∗ p | p ∧ p | . . .

(InvAsrt) I ::= [p0, . . . , pN]

Fig. 17. Relational Assertions

As explained above, the assertions are interpreted over relational states Θ,
which consist of the low-level task-local states σ, the high-level abstract states

Σ, and the abstract statements s that the low-level code needs to refine. Σ and
s are defined in Fig. 10. σ, as shown in Fig. 18, consists of a task-local view m of
program variables and memory, and also the global isr register and the task-local
interrupt states δ (see Fig. 4). Here m contains the global and local variables (G
and E respectively) and the memory M , whose definitions are omitted.

(RelState) Θ ::= (σ,Σ, s)

(σ,Σ, s) |= emp iff σ.m.M = ∅ ∧Σ = ∅
(σ,Σ, s) |= empE iff σ.m.E = ∅ ∧ (σ,Σ, s) |= emp

(σ,Σ, s) |= x 7−→v iff ∃a.(σ.m.G)(x) = a ∧ σ.m.M = {a v} ∧Σ = ∅
(σ,Σ, s) |= ISR(isr′) iff σ.isr = isr′ ∧ (σ,Σ, s) |= emp

(σ,Σ, s) |= xky iff ((k=N ∧ is=nil) ∨ ∃is′.(σ.δ.is=k :: is′)) ∧ (σ,Σ, s) |= emp

(σ,Σ, s) |= χ.t iff χ Σ t

(σ,Σ, s) |= [|s′|] iff s = s
′ ∧ (σ,Σ, s) |= emp

(σ,Σ, s) |= a�Ω iff Σ = {a Ω} ∧ σ.m.M = ∅

f ⊥ g def
= dom(f) ∩ dom(g) = ∅ Σ1]Σ2

def
=

{
Σ1 ∪Σ2 iff Σ1 ⊥ Σ2

undef otherwise

σ1] σ2
def
=

((G,E,M1 ∪M2), isr, δ) iff M1 ⊥M2 ∧ σ1 = ((G,E,M1), isr, δ)

∧σ2 = ((G,E,M2), isr, δ)
undef otherwise

Θ1]Θ2
def
= (σ1] σ2, Σ1]Σ2, s) where Θ1 =(σ1, Σ1, s) ∧Θ2 =(σ2, Σ2, s)

Θ |= p1 ∗ p2 iff ∃Θ1, Θ2.Θ = Θ1]Θ2 ∧Θ1 |= p1 ∧Θ2 |= p2

Fig. 18. Semantics of Relational Assertions

Assertion emp says the low-level memory and the high-level abstract state
are both empty. empE further requires that the local variable environment be
empty too. x 7−→ v specifies a singleton memory cell with v stored in the global
program variable x. ISR(isr), IS(is), IE(ie) and CS(cs) specify the value of the
corresponding interrupt status (see Fig. 4). xkymeans that the currently running
interrupt handler is at level k (or k = N , meaning no running handlers).

χ.t says that, based on the high-level abstract state, the abstract scheduler
χ picks t as the target task. a�Ω specifies a singleton high-level abstract state
mapping the data name a to the abstract data Ω. [|s|] means the current abstract
statement remaining to be refined is s. The separating conjunction p1 ∗p2 means
p1 and p2 hold over disjoint parts of a relational state.

Ownership-transfer semantics for multi-level interrupts. CSL [22] prevents data
races by enforcing disjoint ownership of resources among tasks. Synchronization
is modeled in terms of ownership transfer. Feng et al. [11] extend CSL and assign
ownership-transfer semantics to interrupt operations. The idea is demonstrated
in Fig. 19, which shows the logical memory model when there are only one task
and single-level interrupt. Since the interrupt handler can preempt the task, we
let the handler to reserve its required memory first (represented as block B).

B must remain publicly available if the interrupt is enabled. Then the task can
only access the remaining part (block T). We use grey boxes to represent local
resources of the task. Disabling interrupts (cli) by the task essentially transfers
the ownership of B from public to task-local. Correspondingly, sti converts the
block from task-local to public, therefore the task cannot access it anymore. Sim-
ilarly, invocation of the interrupt handler (not shown in the figure) automatically
transfers B from public to the local resource of the handler, while iret transfers
it back to public.

T B

I0

T T

T

T TT B

Critical
Region

cli

sti

I0

I0

I0

Fig. 19. Memory Partition for Handler and Non-
Handler (Figure taken from [11])

Since block B is shared be-
tween the interrupt handler and
the task, it must be well-formed
when it is public. We use the re-
source invariant I0 to specify the
well-formedness. Then the above
ownership transfer semantics of
cli and sti can be formalized
in the following (simplified) pro-
gram logic rules:

I0 ` {pt} cli {pt ∗ I0} I0 ` {pt ∗ I0} sti {pt}

Note that the partition between B and T is enforced logically using the sepa-
rating conjunction in separation logic (see Fig. 18). It does not require physical
separation in the program state model.

In this paper we extend this idea to support multi-level nested interrupts,
where the ownership transfer of interrupt primitives is determined not only by
the ie flag, but also by the isr register. Figure 20 shows the memory model (where
the number N of interrupts is set to 6). Interrupt handlers at levels 0 to N−1
are assigned with resource blocks B0, . . . , BN−1 respectively. BN represents the
resource shared only among tasks, i.e., the non-handler code. We omit task-local
resources, therefore there are no counterparts to block T in Fig. 19. Handlers’
priorities to reserve their required resources are consistent with their interrupt
priority levels. That is, B0 satisfies all the need of the level-0 (highest priority)
handler, while the level-k handler may need to access B0, . . . , Bk−1, in addition
to Bk. The non-handler has the lowest priority. Each block Bk is specified by
the resource invariant I(k), where I is defined as a sequence of N+1 assertions
(see the assertion syntax defined above).

Figure 20 demonstrates the ownership transfer of resource caused by inter-
rupt operations under different conditions. The grey or dotted blocks represent
resources exclusively owned in interrupt handlers, different textures for differ-
ent interrupts. The white ones represent resources available for share. Suppose
initially we are at state (1), where the level-3 handler is being executed, as the
value of isr indicates. Since interrupts are disabled, the handler owns B0 − B3,
knowing no requests of levels 0 to 3 could be served. Enabling interrupts (sti)
loses B0 − B2, as shown by state (2), but B3 is remained because isr(3) = 1
and requests of the same (or lower) level are not handled. However, if isr(3) = 0

ie=1

ie=0

isr: [1 0 1 0 0 0] [1 0 0 0 0 0]

sti cli sti

eoi

eoi

iret

iret

(2)

[1 0 1 0 1 0]

(1)(3)

(4)

B0B1B3B4B5B6 B2 B0B1B3B4B5B6 B2 B0B1B3B4B5B6 B2

B0B1B3B4B5B6 B2B0B1B3B4B5B6 B2

(5)

cli

Fig. 20. Ownership-Transfer for Multi-level Interrupts

instead (as in state (5)), executing sti loses B3 as well. Ownership transfer by
cli is the dual of sti.

Executing eoi at state (1) leads to state (5), but it causes no ownership
transfer because interrupts are disabled anyway. If interrupts are enabled instead,
as in state (2), eoi loses the ownership of B3 because another level-3 request may
be handled in state (4). iret can be executed only after eoi. If interrupts are
disabled (as in state (5)), it transfers B0 − B3 from local resources to shared
resources. Otherwise (as in state (4)) there is no ownership transfer because the
handler has lost the ownership of B0 −B3 already.

At state (2), interrupts with higher priority can be served. The “irq 1” step
sets the bit isr(1), disables interrupts, and transfers B0 and B1 from shared
resources to local resources of the level-1 handler, as in state (3).

4.3 Inference Rules

The top rule. We show some selected program logic rules in Fig. 23. The
TopRule establishes the judgment `ψ O : O, ensuring the correctness of O
w.r.t. O if the initial concrete and abstract kernel states satisfy ψ (explained in
Sec. 3.3).

(FunPre) fp ∈ Vallist→ Asrt (FunPost) fq ∈ Vallist→ Asrt

(FunSpec) Γ ∈ FName⇀ FunPre× FunPost

Fig. 21. Function Specifications

To verify the kernel, we need to come up with a specification Γ for the internal
functions ηi in the low-level code, and a sequence of invariants I for kernel
states. Γ defined in Fig. 21 assigns a pair of pre-/post-conditions to each internal
function. The pre-/post-conditions is a mapping from value lists to assertions.
The value list is used to specify the value of parameters.

Then we prove that the internal functions, the API implementations and the
interrupt handlers in the low-level kernel satisfy their specifications, respectively
(the last three premises in the first line of the TopRule rule). The proof of each
component carries the abstract scheduler specification χ and the invariant I.

(σ,Σ, s) |= x 7→l v iff ∃a.(σ.m.E)(x) = a ∧ σ.m.M = {a v} ∧Σ = ∅

getD(η, f)
def
=

{
rev(D1) ++ D2 iff η(f) = (τ,D1,D2, s)
⊥ otherwise

BuildP(D, v̄)
def
=

x 7→l v ∗ BuildP(D′, v̄′) iff D = (x, τ) ::D′ ∧ v̄ = v :: v̄′

x 7→l ∗ BuildP(D′, nil) iff D = (x, τ) ::D′ ∧ v̄ = nil
emp iff D = nil
⊥ otherwise

BuildR(D)
def
= BuildP(D, nil)

BuildAPIPre(ηa, f, ω, v̄)
def
= OS[0̄, 1, nil, nil] ∗ BuildP(getD(ηa, f), v̄) ∗ [|ω(v̄)|]

BuildAPIRet(ηa, f)
def
= OS[0̄, 1, nil, nil] ∗ BuildR(getD(ηa, f)) ∗ [|end |]

BuildFunPre(ηi, f, v̄, fp)
def
= fp(v̄) ∗ BuildP(getD(ηi, f), v̄)

BuildFunRet(ηi, f, v̄, fq)
def
= fq(v̄) ∗ BuildR(getD(ηi, f))

BldItrpPre(k, ε, isr, is, I)
def
= OS[isr{k 1}, 0, k :: is, nil] ∗ I[0, k] ∗ [|ε(k)|] ∗ empE

BldItrpRet(k, isr, is, I)
def
= ∃ie.OS[isr{k 0}, ie, k :: is, nil]∗

((ie = 1∧emp)∨(ie = 0∧I[0, k]))∗[|end|]

I[n,m]
def
=

{
I(n)∗I(n+1)∗. . .∗I(m) if 0 ≤ n ≤ m ≤ N
emp otherwise

OS[isr, ie, is, cs]
def
= ∃k. ISR(isr) ∗ IE(ie) ∗ IS(is)∗CS(cs) ∗ xky∗

(∀k′. 0≤k′<k → isr(k′)=0)

bψc def
= λ(σ,Σ, s). ∀Λ.ψ Λ Σ ∧ ∃t.Λ|t = σ

INV(I, k)
def
= ∃isr. ISR(isr)∗

((isr(k) = 1 ∧ emp) ∨ ((isr(k) = 0 ∨ k = N) ∧ I(k)))

SWINV(I)
def
= ISR(0̄) ∗ IE(0) ∗ (∃ k. xky ∗ I[0, k])

Fig. 22. Auxiliary Definitions of Inference Rules

The rule also requires that ψ ensures the initial states satisfy the invariant
I[0, N], the interrupt-related states are properly initialized, and the initial local
variable environment is empty. I[n,m] defined in Fig. 23 is the separating con-
junction of invariants from level n to m. OS[isr, ie, is, cs] specifies the status of
interrupts, and requires that the currently executing handler (on top of is) have
the highest priority among those in service (as recorded in isr). bψc lifts ψ to
relational assertions (defined in Fig. 22). More details about side conditions in
the rule can be seen in Coq code [28].

Verifying interrupt handlers. The Itrp rule proves the correctness of interrupt
handlers. It requires that each individual interrupt handler is correct with respect
to its specification. The judgment for statements is in the form of Γ ;χ; I; r; pi `{
p
}
s
{
q
}

. We follow the CSL-style reasoning, where I specifies shared resource
blocks, and the pre-/post-conditions specify local resources that are accessed ex-
clusively by the current task. The precondition is p, while q, r and pi are all

O = (ηa, ηi, θ) O = (ϕ, ε, χ) χ; I ` ηi : Γ Γ ;χ; I ` ηa : ϕ Γ ;χ; I ` θ : ε
bψc ⇒ I[0, N] ∗ OS[0̄, 1, nil, nil] ∗ empE other side conditions

`ψ O :O
(TopRule)

p = BldItrpPre(k, ε, isr, is, I) pi = BldItrpRet(k, isr, is, I)
dom(θ)=dom(ε) Γ ;χ; I; false; pi `

{
p
}
θ(k)

{
false

}
for all k ∈ {0, . . . , N−1}

Γ ;χ; I ` θ : ε
(Itrp)

dom(η) = dom(ϕ) BuildAPIPre(η, f, ω, v̄) = p BuildAPIRet(η, f) = r
η(f) = (, , , s) ϕ(f) = ω Γ ;χ; I; r; false `

{
p
}
s
{
false

}
Γ ;χ; I ` η : ϕ

(WfAPI)

dom(η) = dom(Γ) BuildFunPre(η, f, v̄, fp) = p BuildFunRet(η, f, v̄, fq) = r
η(f) = (, , , s) Γ (f) = (fp, fq) Γ ;χ; I; r; false `

{
p
}
s
{
false

}
χ; I ` η : Γ

(WfFun)

p⇒ p′ Γ ;χ; I; r; pi `
{
p′

}
s
{
q′

}
q′ ⇒ q

Γ ;χ; I; r; pi `
{
p
}
s
{
q
} (conseq)

Γ ;χ; I; r; pi `
{
p1

}
s1

{
p2

}
Γ ;χ; I; r; pi `

{
p2

}
s2

{
p3

}
Γ ;χ; I; r; pi `

{
p1

}
s1; s2

{
p3

} (seq)

Γ ;χ; I; r; pi `
{
p1

}
s
{
p2

}
q does not specify ie, is, cs, isr and s

Γ ;χ; I; r ∗ q; pi ∗ q `
{
p1 ∗ q

}
s
{
p2 ∗ q

} (frm)

pV p′ Γ ;χ; I; r; pi `
{
p′

}
s
{
q′

}
q′ V q

Γ ;χ; I; r; pi `
{
p
}
s
{
q
} (abscsq)

Γ ;χ; I; r; pi`
{
OS[isr, 1, is, cs]∗xky ∗ [|s|]

}
encrt

{
OS[isr, 0, is, 1::cs]∗INV(I, k)∗I[0, k − 1]∗[|s|]

} (encrt)

Γ ;χ; I; r; pi `
{
OS[isr, 0, is, cs]∗[|s|]

}
encrt

{
OS[isr, 0, is, 0::cs]∗[|s|]

} (encrt-0)

Γ ;χ; I; r; pi`
{
OS[isr, 0, is, 1::cs]∗xky∗INV(I, k)∗I[0, k−1]∗[|s|]

}
excrt

{
OS[isr, 1, is, cs]∗[|s|]

} (excrt)

Γ ;χ; I; r; pi `
{
OS[isr, 0, is, 0::cs] ∗ [|s|]

}
excrt

{
OS[isr, 0, is, cs] ∗ [|s|]

} (excrt-0)

Γ ;χ; I; r; pi `
{
OS[isr, 1, k :: is, cs]∗I(k)∗[|s|]

}
eoi k

{
OS[isr{k 0}, 1, k :: is, cs]∗[|s|]

} (eoi)

p⇔ SWINV(I) ∗ IS(is) ∗ CS(cs)

Γ ;χ; I; r; pi `
{

(p ∗ [|sched; s|]) ∧ χ.x
}
switch x

{
p ∗ [|s|]

} (switch)

p⇒ pi

Γ ;χ; I; false; pi `
{
p
}
iext

{
false

} (iext)
p⇒ r

Γ ;χ; I; r; false `
{
p
}
return

{
false

} (ret)

Fig. 23. Selected Inference Rules

post-conditions for different exits, i.e., sequential composition, return from func-
tions, and return from interrupts, respectively. For the whole body of interrupt
handlers, we disable the other two exits by setting r and q to false.

We build the pre-/post-conditions of interrupt handlers with the auxiliary
definitions BldItrpPre and BldItrpRet given in Fig. 22. The precondition says that,
when entering the level-k handler, isr(k) is set to 1, the interrupt is disabled and
k is pushed onto the interrupt stack is (therefore OS[isr{k 1}, 0, k :: is, nil]).
Since there is no handler of higher-priority in service, the handler has exclusive
access to the resource I[0, k] (see Fig. 20). It also needs to refine the high-
level specification code ε(k). empE requires there are no local variables at the
beginning. The built post-condition requires that: (1) the corresponding isr bit
has been cleared; (2) if interrupts are enabled (ie = 1), the handler has no access
to the shared resources; otherwise it needs to ensure that its owned resources
are well formed w.r.t. I[0, k] (see the two iret steps in Fig. 20); and (3) there
is no high-level specification code remaining to be refined (i.e., the abstract
specification code ε(k) specified in the precondition has been fulfilled).

Similarly, we use BuildAPIPre and BuildAPIRet defined in Fig. 22 to construct
the pre-/post-conditions for kernel APIs. The local states before and after call-
ing to the API f are specified by BuildP(getD(ηa, f), v̄) and BuildAPIRet(ηa, f),
which specify the memory locations of the arguments and local variables of the
API. For the internal functions, in addition to these local states, we need to add
the local states specified by the functions specifications. The rules of proving
χ; I ` ηi : Γ and Γ ;χ; I ` ηa : ϕ are similar to the rules for interrupt handlers.

In the middle of Fig.23, we give the seq rule for sequential compositionality,
and conseq rule to strengthen and weaken the precondition and postcondition
respectively. Also as in separation logic, the frm is designed for modular rea-
soning, in which the side-condition requires that the framed assertion should not
say anything about interrupt states and abstract statements.

Rules for commands. The iext rule simply requires that the post-condition pi
holds when we reach the end of the interrupt handler. The ret rule requires that
the post-condition r holds when we reach the end of the non-handler function.
The encrt rule shows the ownership transfer when interrupts are disabled.
Suppose we are at the level-k handler (k = N means we are executing the non-
handler code). Disabling interrupts prevents interrupt requests from level 0 to
k− 1, therefore the current task gains the ownership of I[0, k − 1]. The transfer
of the k-th block is specified by INV(I, k) in Fig. 23. If the bit isr(k) is 0 (or
k = N), the task also gains the ownership of I(k), otherwise it already has the
ownership of the k-th block and there is no extra ownership transfer. The two
scenarios are also demonstrated by the two cli steps in Fig. 20. If interrupts
are already disabled when encrt is executed, there is no ownership transfer, as
shown by the encrt-0 rule.

The excrt rule is the dual of the encrt rule (see the two sti steps in Fig. 20).
Correspondingly there is a excrt-0 rule. The eoi rule says, if interrupts are
enabled, the task loses the ownership of I(k) after eoi k. Otherwise there is no

ownership transfer and the corresponding rule is omitted (see the two eoi steps
in Fig. 20).

The switch rule requires that the invariant SWINV(I) holds before switching
away and it is preserved after switching back. SWINV(I), defined in Fig. 23, says
that interrupts must be disabled, and all the bits of isr are 0 (i.e., either we are
running non-handler code or we are in the outmost layer of nested invocation
of interrupt handlers and have already executed eoi). Also if we are running
level-k code (either handler or non-handler if k = N), the resource blocks 0 to k
acquired before should satisfy I[0, k], so that the target task could access them.
The rule also says that the task-local states is and cs are not changed by switch.

To establish refinement, the precondition also requires that the high-level
abstract scheduler χ picks the same task with the one in x, and switch x at
the low level correspond to the sched step at the high level. Therefore in the
post-condition sched is no longer in the remaining abstract operations.

Following [20], the abscsq rule looks like a regular consequence rule but
allows us to execute the abstract code. The implication pV p′ is defined below.

∀σ,Σ, s. ((σ,Σ, s) |= p) =⇒ ∃Σ′, s′.
(

(s, Σ) • H
∗� ,2 (s′, Σ′)

)
∧((σ,Σ′, s′) |= p′)

That is, given a related state (σ,Σ, s) satisfying p, the abstract code s could exe-
cute zero or multiple steps starting from Σ and reach (Σ′, s′), so that the result-
ing related state (σ,Σ′, s′) satisfies p′. This rule allows us to establish simulation
between the concrete and the abstract code, which then ensures refinement.

We can look at Fig. 16 to see the use of this rule. Suppose we want to verify
inc() using the specification in Fig. 16(d). When we reach the cas command (see
Fig. 16(a)), we have the precondition (tmp=cnt∧cnt=CNT∧ [|<CNT++>|] ∨ . . .)
(the case for tmp 6= cnt omitted). Right after cas, we have (done ∧ cnt =
CNT+1∧[|<CNT++>|] ∨ ¬done∧. . .). We have cnt = CNT+1 because cnt increments
if cas succeeds. To establish the simulation, we apply the abscsq rule to execute
the abstract code, because (cnt=CNT+1 ∧ [|<CNT++>|])V (cnt=CNT ∧ [|end|]),
following the above definition of pV p′.

Theorem 4.12 gives the soundness of the framework. The proofs are based
on a compositional simulation following [19], and have been formalized in Coq.
More details about the logic can be seen in TR [28].

Theorem 4.1 (Soundness). `ψ O :O =⇒ O vψ O.

4.4 Soundness via. Simulations

In this section, we give the semantics of our logic judgments and show the proof
sketch of proving the soundness of the CSL-style relational logic.

Judgment Semantics. In this section, we show the semantics of inference rules.
The semantics of Γ ;χ; I; r; pi `

{
p
}
s
{
q
}

is defined in Def. 4.18 via a compo-
sitional simulation (defined in Def 4.17). Def. 4.4, 4.5 and 4.6 are the semantics
of WfInt rule, WfAPI rule and WfFun rule, respectively.

*

(a) Non-switch Steps (b) Switch Step

Fig. 24. Simulation Digraphs

Our compositional simulation is defined by adapting RGSim [19]. Fig. 24
shows the main idea. We use bIc (defined in Fig 25), instead of Rely/Guarantee
conditions, to specify the interleavings between interrupt handlers and non-
handler code. The definition of bIc follows the ownership-transfer semantics
given in Fig. 20. It precisely specifies the well-formed shared resource block-
s (while blocks) and allows the ownership of these blocks to be transferred in
terms of switching on/off ie and isr.

For the task steps (self steps), as shown in Fig 24(a), if the shared relational
state (the white blocks in Fig. 20) (σs, Σs,) satisfies bIc (defined in Fig. 25) and
the low-level kernel code C can make one step, then the high-level specification
code s could make zero-or-multiple steps with maintaining the resulting shared
part (σ′s, Σ

′
s,) satisfying bIc, and the remained low-level code C ′ simulates the

abstract specification code s
′. By enforcing the ownership transfer semantics

with bIc it allows us to do compositional reasoning for interrupts.
For switch steps (environment/other steps), which make the concurrency

model be different from the idealized parallel composition C1 ‖ C2 in the exiting
theoretical work. As shown in Fig 24(b), we modularly establish the correspon-
dence for the context switch between the two levels. The interrupt is disabled
when doing context switch, based on the ownership transfer semantics, the re-
source blocks specified by SWINV(I) are owned by the current task while some of
them specified by bIc are shared. Note that we have SWINV(I) ∗ bIc ⇒ I[0, N],
then we know that all the resource blocks B0,. . .BN−1 and A are well-formed
with respect to I[0, N], which ensures the safe execution of the task switched
to. When switching back from another task, we also have that all the resource
blocks are well-formed. To achieve the compositionality, we require there exists
one particular scheduling (among all possible ones) at the high level that picks
the same task as the low level, which is specified by χ.x.

To support modular reasoning of internal function calls, at the entry point
of a internal function, we use the function specification stored in Γ to avoid step
into the function body, as shown in the Function Steps in Def. 4.17.

Skip and IRet case are used to deal with the ending of the code and other
ending cases are omitted in Def. 4.17.

For each step in the kernel method, we require it to be safe.

σ ⊥ σ′ def
= σ = ((G,E,M), isr, δ) ∧ σ = ((G,E,M ′), isr, δ) ∧M ⊥M ′

I{n,m} def
=

{
INV(I, n)∗INV(I, n+1)∗. . .∗INV(I,m) if 0 ≤ n ≤ m ≤ N
emp otherwise

bIc def
= ((IE(1) ∗ I{0, N}) ∨ (IE(0) ∗ (∃ k. xky ∗ I{k + 1, N}))

Fig. 25. Auxiliary Definitions of Simulations

Definition 4.2 (Judgment Semantics). Γ ;χ; I; r; pi |= {p}s{q} holds, iff for
any σ, Σ and s, if (σ,Σ, s) |= p, then Γ ;χ; I; r; pi; q |= ((s, (◦, •)), σ) � (s, Σ).

Definition 4.3 (Method Simulation). Γ ;χ; I; r; pi; q |= (C, σ) � (s, Σ) hold-
s, whenever:

– Normal Steps: for any P,C ′, σs, Σs, σ1 and σ′1, if C 6= (fexec(,),),
(σs, Σs,) |= bIc, σ1 = σ] σs, Σ ⊥ Σs and P ` (C, σ1)• L

� ,2 (C ′, σ′1),
then there exist Σ′s, s

′, Σ′, σ′ and σ′s, such that the followings hold:

• σ′1 = σ′] σ′s, (σ′s, Σ
′
s,) |= bIc,

• (s, Σ]Σs) • H
∗� ,2 (s′, Σ′]Σ′s),

• Γ ;χ; I; r; pi; q |= (C ′, σ′) � (s′, Σ′).

– Function Call: for any σs, Σs, κs, f and v̄, if C = (fexec(f, v̄), (◦, κs)),
σ ⊥ σs, (σs, Σs,) |= bIc and Σ ⊥ Σs, then there exist σ1, σf , Σ1, Σf , Σ

′,
Σ′s, s

′, fp and fq , such that the followings hold:

• Γ (f) = (fp, fq),

• (s, Σ]Σs) • H
∗� ,2 (s′, Σ′]Σ′s), (σs, Σ

′
s, s
′) |= bIc,

• σ = σ1] σf , Σ′ = Σ1]Σf , (σ1, Σ1, s
′) |= fp (rev(v̄)),

• for any σ′, σ′1, Σ′′, Σ′1 and s
′′, if σ.m.G = σ′.m.G, σ.m.E = σ′.m.E,

(σ′1, Σ
′
1, s
′′) |= fq (rev(v̄)), σ′ = σ′1] σf , and Σ′′ = Σ′1] Σf , then

Γ ;χ; I; r; pi; q |= ((skip, (◦, κs)), σ′) � (s′′, Σ′′).

– Context Switch: for any σs, κs, x andΣs, if σ ⊥ σs, C = (switch x, (◦, κs)),
(σs, Σs,) |= bIc and Σ ⊥ Σs, then there exist σ1, σ

′, Σ1, Σ
′, Σ′s and s

′, such
that the followings hold:

• (s, Σ]Σs) • H
∗� ,2 (sched; s′, Σ1]Σ′]Σ′s),

• (σs, Σ
′
s,) |= bIc, σ = σ1] σ′,

• (σ′, Σ′,) |= SWINV(I) ∧ (χ.x)
• for any σ′′, σ′′′, Σ′′ and Σ′′′, if σ′′′ = σ1] σ′′, Σ′′′ = Σ1] Σ′′ and

(σ′′, Σ′′,) |= SWINV(I), then Γ ;χ; I; r; pi; q |= ((skip, (◦, κs)), σ′′′) �
(s′, Σ′′′).

– Skip: for any σs and Σs, if C = (skip, (◦, •)), σ ⊥ σs, (σs, Σs,) |= bIc and

Σ ⊥ Σs, then there existΣ′, Σ′s and s′, such that (s, Σ]Σs) • H
∗� ,2 (s′, Σ′]Σ′s),

(σs, Σ
′
s,) |= bIc and (σ,Σ′, s′) |= q;

– IRet: for any κs, σs and Σs, if C = (iext, (◦, κs)), bκsc =⊥, bκscc =⊥,
σ ⊥ σs, (σs, Σs,) |= bIc and Σ ⊥ Σs, then there exist Σ′, Σ′s and s

′, such

that (s, Σ]Σs) • H
∗� ,2 (s′, Σ′]Σ′s), (σs, Σ

′
s,) |= bIc, and (σ,Σ′, s′) |= pi;

– ReturnE and Return cases are similar to the IRet case, we omit them
here;

– Abort: for any P , Σs, σs and σ′, if C 6= (fexec(,),), σ′ = σ] σs,
(σs, Σs,) |= bIc and Σ ⊥ Σs, then ¬(P ` (C, σ′)• L

� ,2 abort).

Definition 4.4 (Well-Formed Interrupts). Γ ;χ; I |= θ : ε holds, iff for
any k, isr, is, G, p and pi, if ε(k) = s, p = BldItrpPre(k, s, isr, is, I), pi =
BldItrpRet(k, isr, is, I), then there exists s, such that θ(k) = s and Γ ;χ; I; false; pi |=
{p}s{false}

Definition 4.5 (Well-Formed APIs). Γ ;χ; I |= ηa : ϕ holds, iff for any f , v̄,
ω, p and r, if ϕ(f) = ω, p = BuildAPIPre(ηa, f, ω, v̄), r = BuildAPIRet(ηa, f), then
there exists s, such that ηa(f) = (τ,D1,D2, s) and Γ ;χ; I; r; false |= {p}s{false}.

Definition 4.6 (Well-Formed Internal Functions). χ; I |= ηi : Γ
holds, iff dom(Γ) = dom(ηi) and for any f , fp, fq, v̄, p and r, if Γ (f) = (fp, fq),
p = BuildFunPre(ηi, f, v̄, fp) and r = BuildFunRet(ηi, f, v̄, fq) then there exists
s, such that ηi(f) = (, , , s) and Γ ;χ; I; r; false |= {p}s{false}.

Soundness Proof. To prove the soundness of our logic (Theorem 4.12), following
[18], we need to define the following two simulation relations as bridges:

1. A whole-program simulation relation (defined in Def. 4.7) between concrete
and abstract levels, which implies that the observable behaviors of the low
level is a subset of the high level (see Lemma 4.9);

2. A task-local simulation relations (defined in Def. 4.8) between the low-level
task and the high-level task, which can be composed together to ensure the
whole program simulation (see Lemma 4.10). And it could be implied by the
method simulation with some side conditions (see Lemma 4.11).

Definition 4.7 (Program Simulation). (P,W) � (P,W) holds, whenever:

– for any W , W ′ and P , if P ` W L +3W ′, then there exist W′, such that
the followings hold:

• P `W H
∗+3W′ and W ′.∆ = W′.∆,

• (P,W ′) � (P,W′).

– for any W , W ′ and P , if P ` W L
ς +3W ′, then there exist W′, such that

the followings hold:

• P `W H
ς ∗+3W′ and W ′.∆ = W′.∆,

• (P,W ′) � (P,W′).

– for any W , W ′ and P , if P `W L +3 abort, then P `W H
∗+3 abort

Definition 4.8 (Task Simulation). P ;P; I; p |= (Cl, σ) � (Ch, Σ) holds, when-
ever:

– Normal Steps: for any C ′l , ∆,∆
′, σs, Σs, σ1 and σ′1, if (σs, Σs,) |= bIc,

σ1 = σ] σs, Σ ⊥ Σs and P ` (C,∆, σ1) L // (C ′, ∆′, σ′1), then there exist
Σ′s, C

′
h, Σ

′, σ′ and σ′s, such that the followings hold:
• σ′1 = σ′] σ′s, (σ′s, Σ

′
s,) |= bIc,

• P ` (Ch, ∆,Σ]Σs) H
∗// (C ′h, ∆

′, Σ′]Σ′s),
• P ;P; I; p |= (C ′l , σ

′) � (C ′h, Σ
′).

– Event Steps: for any C ′l , ∆,∆
′, σs, Σs, σ1 and σ′1, if (σs, Σs,) |= bIc,

σ1 = σ] σs, Σ ⊥ Σs and P ` (C,∆, σ1) L
ς // (C ′, ∆′, σ′1), then there

exist Σ′s, C
′
h, Σ

′, σ′ and σ′s, such that the followings hold:
• σ′1 = σ′] σ′s, (σ′s, Σ

′
s,) |= bIc,

• P ` (Ch, ∆,Σ]Σs) H
ς ∗// (C ′h, ∆

′, Σ′]Σ′s),
• P ;P; I; p |= (C ′l , σ

′) � (C ′h, Σ
′).

– Context Switch: for any∆, σs, κs, x andΣs, if σ ⊥ σs, C = (switch x, (◦, κs)),
(σs, Σs,) |= bIc and Σ ⊥ Σs, then there exist σ1, σ

′, Σ′, Σ1, Σ′s, χ, s′ and
K, such that the followings hold:

• P = (, (, , χ))

• P ` (Ch, ∆,Σ]Σs) H
∗// ((sched; s′,K), ∆,Σ1]Σ′]Σ′s),

• (σs, Σ
′
s,) |= bIc, σ = σ1] σ′,

• (σ′, Σ′,) |= SWINV(I) ∧ (χ.x)
• for any σ′′, σ′′′, Σ′′ and Σ′′′, if σ′′′ = σ1] σ′′, Σ′′′ = Σ1] Σ′′ and

(σ′′, Σ′′,) |= SWINV(I), then P ;P; I; p |= ((skip, (◦, κs)), σ′′′) � ((s′,K), Σ′′′).

– Skip: for any ∆, σs and Σs, if C = (skip, (◦, •)), σ ⊥ σs, (σs, Σs,) |= bIc
and Σ ⊥ Σs, then there exist Σ′, Σ′s, such that (σs, Σ

′
s,) |= bIc, (σ,Σ′,) |=

p and P ` (Ch, ∆,Σ]Σs) H
∗// ((skip, (◦, •)), ∆,Σ′]Σ′s), .

– Abort: for any ∆, Σs, σs and σ′, if σ′ = σ]σs, (σs, Σs,) |= bIc and Σ ⊥ Σs
and P ` (Cl, ∆, σ

′) L // abort, then P ` (Ch, ∆,Σ]Σs) H
∗// abort.

Lemma 4.9 (ProgSim Implies Event Trace Refinement). For any P, P,W
and W, if (P,W) � (P,W), then (P,W) 4 (P,W).

Lemma 4.10 (Compositionality). For any ηa, ηi, θ, ϕ, ε, χ, ψ, Tl, Th, ∆,
tc and Σ, if the followings holds:

– P = (A, (ηa, ηi, θ)), P = (A, (ϕ, ε, χ))

– Match(ψ, (Tl, Λ,∆, tc), (Th, Σ,∆)), Λ = ((G,Π,M), isr, π)

– Γ ;χ; I |= θ : ε, χ; I |= ηi : Γ , χ; I |= ηi : Γ

– Tl = {t1 Cl1, . . . , tn Cln}, Th = {t1 Ch1, . . . , tn Chn}
– M = M1]M2] · · ·]Mn]Ms, Σ = Σ1]Σ2] · · ·]Σn]Σs
– Λ|tc = σc, (σc CMs, Σs,) |= bIc
– P ;P; I; p |= (Clc, σc CMc) � (Chc, Σc)

– for any i, σi, σr, Σr, i 6= c, σi = (Λ|ti)CMi, (σr, Σr,) |= SWINV(I), σi ⊥ σr,
Σi ⊥ Σr, then P ;P; I; p |= (Cli, σi] σr) � (Chi, Σi]Σr)

then (P, (Tl, Λ,∆, tc)) � (P, (Th, Σ,∆)).

Lemma 4.11. For any s, P , P, I,

– P = (A, (ηa, ηi, θ)), P = (A, (ϕ, ε, χ))

– (σ,Σ,) |= OS[0̄, 1, nil, nil]

– Γ ;χ; I |= θ : ε, χ; I |= ηi : Γ , χ; I |= ηi : Γ

then P ;P; I;OS[0̄, 1, nil, nil] |= ((s, (◦, •)), σ) � ((s, (◦, •)), Σ).

Here we present the proof sketch of Theorem 4.12, and omit the proofs of
other lemmas. The complete proofs can be found in our Coq proof [?]. Note the
co-inductive proofs done in Coq for the soundness theorem are non-trivial.

Theorem 4.12 (Soundness).

1. Γ ;χ; I; r; pi `
{
p
}
s
{
q
}

=⇒ Γ ;χ; I; r; pi |= {p}s{q}
2. Γ ;χ; I ` θ : ε =⇒ Γ ;χ; I |= θ : ε
3. Γ ;χ; I ` ηa : ϕ =⇒ Γ ;χ; I |= ηa : ϕ
4. χ; I ` η : Γ =⇒ χ; I |= η : Γ
5. `ψ O :O =⇒ O vψ O

Proof : Theorems 1 - 4 are proved in Lemmas 4.19-4.16. Here we focus on the
proof of TopRule. Suppose O = (ηa, ηi, θ) and O = (A, (ϕ, ε, χ), then from the
definition of O vψ O, we need to prove that:

for any A, Λ, Σ,∆, t, T , if Match(ψ, (T,∆,Λ, t), (T,∆,Σ)) then

((A,O),W) 4 ((A,O),W)

then from Lemma 4.9, we need prove that

((A,O),W) � ((A,O),W)

from the definition of Match we know there exists T,∆, t, Λ,Σ such that,

W = (T,∆,Λ, tc) W = (T,∆,Σ) (ψ Λ Σ)

suppose that Λ = ((G,Π,M), isr, π), then from Lemma 4.10, we need to prove
that there exists Ms, Σs, M1, Σ1, M2, Σ2, . . . , Mn, Σn, Clc, Chc such that:

(1) Γ ;χ; I |= θ : ε χ; I |= ηi : Γ χ; I |= ηi : Γ

(2) M = M1]M2] · · ·]Mn]Ms, Σ = Σ1]Σ2] · · ·]Σn]Σs
(3) Λ|tc = σc, (σc CMs, Σs,) |= bIc
(4) P ;P; I; p |= (Clc, σc CMc) � (Chc, Σc) Tl(tc) = Clc Th(tc) = Chc

(5) for any i, σi, σr, Σr, Cli, Chi, i 6= c, Tl(ti) = Cli, Th(ti) = Chi σi =
(Λ|ti) CMi, (σr, Σr,) |= SWINV(I), σi ⊥ σr, Σi ⊥ Σr, then P ;P; I; p |=
(Cli, σi] σr) � (Chi, Σi]Σr)

where ((G,E,M), isr, δ)CM ′
def
= ((G,E,M ′), isr, δ). From TopRule and Lemma

4.19 - 4.16, we can trivially know that (1) holds, then from TopRule we know
that

bψc ⇒ I[0, N] ∗ OS[0̄, 1, nil, nil] ∗ empE (1)

then from the semantics of the assertion we know that exist

M1 = M2 = · · · = Mn = ∅, Σ1 = Σ2 = · · · = Σn = ∅

and
Ms = M, Σs = Σ

such that (2) and (3) hold.
Then from the definition of Match, we know that

∀i,∃si, Cli = Chi = (si, (◦, •))

Then from Lemma 4.11 we know that (4) holds. From the definition SWINV(I)
and (I) we know that, ((Λ|ti)C ∅, ∅,) |= SWINV(I) and we know that Λ|ti =
(Λ|ti)] ((Λ|ti)C ∅), then for (5), we only need to prove that for any i, if i 6= c,
then

P ;P; I; p |= (Cli, Λ|ti) � (Chi, Σi)

and it can be easily proved by Lemma 4.11.

Lemma 4.13. For all Γ, χ, I, r, pi, p, s and q, Γ ;χ; I; r; pi `
{
p
}
s
{
q
}

=⇒
Γ ;χ; I; r; pi |= {p}s{q}

Proof : First induction over the inference rules, for the compositional cases, like
while, we prove them by co-induction. The proof details can be found in [?].

Lemma 4.14. For all Γ, χ, I, θ and ε, Γ ;χ; I ` θ : ε =⇒ Γ ;χ; I |= θ : ε

Proof : By Def. 4.4 and Lemma 4.19.

Lemma 4.15. For all Γ, χ, I, ηa and ϕ, Γ ;χ; I ` ηa : ϕ =⇒ Γ ;χ; I |= ηa : ϕ

Proof : By Def. 4.5 and Lemma 4.19.

Lemma 4.16. For all Γ, χ, I and η, χ; I ` η : Γ =⇒ χ; I |= η : Γ

Proof : By Def. 4.6 and Lemma 4.19.

Definition 4.17 (Simulation).

Γ ;χ; I; r; pi; r
′ |= (C, σ) � (s, Σ)

holds, whenever:

– Normal Steps: for any η, C ′,Ms,Mf , Σs, σ1 and σ′1, if ¬IsFcall(C), (σ|Ms
, Σs, s) |=

bIc, σ1 = σ]/Ms]/Mf , Σ ⊥ Σs and η ` (C, σ1)• L
� ,2 (C ′, σ′1), then there

exist Σ′s, s
′, Σ′, σ′ and M ′s, such that the followings hold:

• σ′1 = σ′]/M ′s]/Mf , (σ|M ′s , Σ
′
s, s
′) |= bIc,

• (s, Σ]Σs) • H
∗� ,2 (s′, Σ′]Σ′s),

• Γ ;χ; I; r; pi; r
′ |= (C ′, σ′) � (s′, Σ′).

– Function Call: for any Ms, Σs, κs, f, v̄ and T , if C = (fexec(f, v̄), (◦, κs)),
(σ.m.M) ⊥Ms, (σ|Ms

, Σs, s) |= bIc andΣ ⊥ Σs, then there exist σ1,Mf , Σ1, Σf , Σ
′,

Σ′s, s
′, fp, fq, τ and L, such that the followings hold:

• Γ (f) = (fp, fq, (τ, T)),

• (s, Σ]Σs) • H
∗� ,2 (s′, Σ′]Σ′s), (σ|Ms

, Σ′s, s
′) |= bIc,

• σ = σ1]/Mf , Σ′ = Σ1]Σf , (σ1, Σ1, s
′) |= fp (rev(v̄)) L,

• for any σ′,σ′1, Σ′′, Σ′1, v̂ and s
′′, if σ.m.G = σ′.m.G, σ.m.E = σ′.m.E,

(σ′1, Σ
′
1, s
′′) |= fq (rev(v̄)) v̂ L,

σ′ = σ′1]/Mf , and Σ′′ = Σ′1]Σf , then
Γ ;χ; I; r; pi; r

′ |= ((skip v̂, (◦, κs)), σ′) � (s′′, Σ′′).

– Context Switch: for any Ms, κs, x and Σs, if (σ.m.M) ⊥ Ms, C =
(switch x, (◦, κs)), (σ|Ms

, Σs, s) |= bIc andΣ ⊥ Σs, then there exist σ1,M,Σ′,
Σ′s and s

′, such that the followings hold:

• (s, Σ]Σs) • H
∗� ,2 (sched; s′, Σ′]Σ′s),

• (σ|Ms
, Σ′s, s

′) |= bIc, σ = σ1]/M ,
• (σ|M , Σ′, s′) |= SWINV(I) ∧ SWPRE(χ, x)
• for any M ′, σ′ and Σ′′, if σ′ = σ1]/M ′ and (σ′|M ′ , Σ′′, s′) |= SWINV(I),

then Γ ;χ; I; r; pi; r
′ |= ((skip ⊥, (◦, κs)), σ′) � (s′, Σ′′).

– Skip: for any v̂,Ms andΣs, if C = (skip v̂, (◦, •)), (σ.m.M) ⊥Ms, (σ|Ms
, Σs, s) |=

bIc andΣ ⊥ Σs, then there existΣ′, Σ′s and s′, such that (s, Σ]Σs) • H
∗� ,2 (s′, Σ′]Σ′s),

(σ|Ms
, Σ′s, s

′) |= bIc, and (σ,Σ′, s′) |= r′ v̂.
– Return: for any κs,Ms andΣs, if C = (return, (◦, κs)), bκsc =⊥, bκscc =⊥,

(σ.m.M) ⊥ Ms, (σ|Ms
, Σs, s) |= bIc and Σ ⊥ Σs, then there exist Σ′, Σ′s

and s
′, such that (s, Σ]Σs) • H

∗� ,2 (s′, Σ′]Σ′s), (σ|Ms
, Σ′s, s

′) |= bIc, and
(σ,Σ′, s′) |= r ⊥.

– ReturnE: for any v, κs,Ms andΣs, if bκsc =⊥, bκscc =⊥, C = (skip v, (◦, (return)·
κs)), (σ.m.M) ⊥Ms,
(σ|Ms , Σs, s) |= bIc and Σ ⊥ Σs, then there exist Σ′, Σ′s and s

′, such that

(s, Σ]Σs) • H
∗� ,2 (s′, Σ′]Σ′s),

(σ|Ms
, Σ′s, s

′) |= bIc, and (σ,Σ′, s′) |= r v.
– IRet: for any κs,Ms andΣs, if C = (iext, (◦, κs)), (σ.m.M) ⊥Ms, (σ|Ms

, Σs, s) |=
bIc andΣ ⊥ Σs, then there existΣ′, Σ′s and s′, such that (s, Σ]Σs) • H

∗� ,2 (s′, Σ′]Σ′s),
(σ|Ms

, Σ′s, s
′) |= bIc, and (σ,Σ′, s′) |= q v̂.

– Abort: for any η, Σs, Ms, Mf and σ′, if ¬IsFcall(C), σ′ = σ]/Ms]/Mf ,
(σ|Ms

, Σs, s) |= bIc and Σ ⊥ Σs, then
¬(η ` (C, σ′)• L

� ,2 abort)

When executing the client codes we require that each step of low-level and
high-level will keep the client state and code the same. fexec(f, v̄T) is the entry
point of the OS kernel(f is a OS API).

For each step of the kernel, we require it to be safe, and corresponds to some
steps of high level code, as shown in Normal Steps in Def. 4.17. Since the
interrupts may come at any time(if it is enable), we will get a new well-formed
shared resource which is specified by bIc at each step.

To support modular reasoning of internal function calls, at the entry point
of a internal function, we use the function specification stored in Γ to avoid step
into the function body, as shown in the Function Steps in Def. 4.17.

For the Context Switch case, we require that the isr is clear, ie is 0, low-
level and high-level can be scheduled to the same task, and all the shared re-
sources from I0 to In are well-formed. Because the interrupt is disable, so there
exists some shared resources occupied by the current task, we specify them with
SWINV(I) to make sure that it is well-formed.

Definition 4.18 (Judgment Semantics). Γ ;χ; I; r; pi |= {p}s{q}
holds, iff for any σ, Σ and s, if (σ,Σ, s) |= p, then
Γ ;χ; I; r; pi;λ .q |= ((s, (◦, •)), σ) � (s, Σ)

Theorem 4.19 (Soundness of Inference Rules).
Γ ;χ; I; r; pi `

{
p
}
s
{
q
}

=⇒ Γ ;χ; I; r; pi |= {p}s{q}

Definition 4.20 (Well-Formed Interrupts). Γ ;χ; I ` θ : ε holds, iff for any
k, isr, is, G, p and pi, if p = BldItrpPre(k, ε, isr, is, I), pi = BldItrpRet(k, isr, is, I),
then there exists s, such that θ(k) = s and Γ ;χ; I;λ .false; pi `

{
p
}
s
{
false

}
Definition 4.21 (Well-Formed APIs). Γ ;χ; I ` ηa : ϕ holds, iff for any f ,
v̄, p and r, if f ∈ dom(ϕ), p = BuildAPIPre(ηa, f, ϕ, v̄), r = BuildAPIRet(ηa, f)v̄,
then there exists s, such that ηa(f) = (, , , s) and Γ ;χ; I; r; false `

{
p
}
s
{
false

}
Definition 4.22 (Well-Formed Internal Functions). χ; I ` ηi : Γ
holds, iff dom(Γ) = dom(ηi) and for any f , fp and fq if Γ (f) = (fp, fq), then
there exist τ , D1, D2 and s, such that

– ηi(f) = (τ,D1,D2, s), and
– for any v̄, p, r, and L, if p = BuildFunPre(ηi, f, v̄, fp) and r = BuildFunRet(ηi, f, v̄)fq,

then Γ ;χ; I; r; false `
{
p
}
s
{
false

}
Theorem 4.23 (Verifying OS Correctness). For any O, O and ψ, if there
exist Γ , I, χ,ηa, ηi, θ , ϕ, ε and χ, such that O = (ηa, ηi, θ), O = (ϕ, ε, χ) and
the followings hold:

– Verifying Interrupts: Γ ;χ; I ` θ : ε,
– Verifying APIs: Γ ;χ; I ` ηa : ϕ,
– Verifying Internal Functions: χ; I ` ηi : Γ ,
– Side Conditions : Good(I, χ) and for any Λ and Σ, if ψ Λ Σ, then the

followings hold :
• ∀t.(Λ|t, Σ,) |= bIc ∗ OS[empisr, 1, nil, nil] ∗ LVar(nil),

then O vψ O.

L1 OS_ENTER_CRITICAL();

L2 ticks = OSTime;

L3 OS_EXIT_CRITICAL();

L4 return (ticks);

Lemma OSTimeGetRight: forall r p,

Some r = BuildRetA’ api TimeGet tmgetspec nil ->

Some p = BuildPreA’ api TimeGet tmgetspec nil ->

exists t d1 d2 s, api TimeGet = Some (t, d1, d2, s)/\

{|F, X, I, r, Afalse|} |- {{p}} s {{Afalse}}.

Proof.

init spec. (*Initialize Specification*)

hoare forward. (*Forward L1*)

hoare unfold pre. (*Prepare the precondition*)

hoare forward. (*Forward L2 *)

hoare abscsq. (*The high-level step*)

eapply OSTimeGet_high_level_step; pauto.

hoare forward. (*Forward L3*)

unfold AOSTime.

sep auto. (*Sovle side conditions*)

pauto.

hoare forward. (*Forward L4*)

Qed.

Fig. 26. Verifying OSTimeGet() with Tactics

4.5 Coq Tactics

We develop a set of practical tactics in Coq based on the rules of the refinement
logic, including “sep auto” for proving relational assertions, “hoare forward” for
proving refinement judgments, and some domain-specific tactics for proving the
properties of integers and bitmaps. Here we omit the implementation details
which can be seen in [28].

To demonstrate the efficiency of our tactics, we make two versions of proofs
[28] for the API (OSTimeGet), which has only 4 lines code and uses a critical
region to read the global clock and return its value. The one using our tactics
only needs 11 lines of proof scripts, while the other one using the primitive tactics
provided by Coq needs more than 400 lines.

Another advantage of our tactics is that they can help us to smoothly reason
about the spatial parts and extract lemmas that are independent of program
contexts for verifying functionality of kernels. Users with little knowledge about
our framework can prove the code with our tactics.

Because all the APIs are proved in the similar procedure as shown in Fig. 26,
first we initialize specifications with the tactics “init spec”, and we obtain the
Hoare triple with pre- and post- conditions instantiated, next we apply the
“hoare forward” tactic step by step till the point before exiting the critical re-
gion. Then the high-level specification code must be executed to reestablish the

invariant over the related states and exit. Before that we may need to derive
the necessary premises for safely executing the specification code in terms of
the states satisfying invariants when entering the critical section. By applying
the tactic “hoare abscsq”, it allows us to change the precondition by applying a
lemma of proving the safe execution of the current specification code with one-
or-multiple steps. Note that the initial specification code usually contains many
statements of non-deterministic choice, and it is users’ responsibility to choose
a correct branch for accomplishing the proofs. The tactic “sep auto” is used to
solve the generated side conditions about entailment of relational assertions.

Then the major proof efforts lie in proving the extracted lemmas, which are
related to the functional correctness of kernel APIs. For instance, µC/OS-II
supports 64 tasks with priorities form 0 to 63, and the scheduling algorithm
calculates the highest priority of ready tasks using bit operations over the ready
table, and we need to prove the lemma like “0 ≤ x < 64→0 ≤ (x� 3) < 8”, which
involves bit operations over integers limited in small finite domains, such as 0-8,
0-64 and 0-256. Most of the mathematical properties required by µC/OS-II are
limited with small finite domains like this. We develop a domain-specific tactic
called “mauto” to automatically prove these mathematical properties. “mauto”
is implemented by brute force iterating all the possible inputs and solving each
subgoal with “omega”.

5 Proving Priority-Inversion-Freedom

Definition of priority-inversion-freedom (PIF). PIF is an important property in
real-time systems, but there is no standard formal definition for it. Although
there have been efforts trying to formalize and verify it, their definitions all have
serious problems. For instance, Def. 5.1 is formal definition of priority inversion
given in earlier work [6]. It says priority inversion occurs if there is a higher
priority task t waiting directly or indirectly for a lower priority task t′.

Definition 5.1 (Priority Inversion). PI(Σ) holds, iff there exist t and t′ such

that t
Σ−→+ t′ and CurPr(t′, Σ) ≺ CurPr(t, Σ).

Here the waiting chain t
Σ−→+ t′ is the transitive closure of the waiting relation

t
Σ−−→ t′, saying t waits for the resource owned by t′. CurPr(t, Σ) returns the

current priority of t. Then PIF can be simply defined as the negation of PI(Σ)
over any state Σ on the execution sequence.

Although it looks simple and intuitive, it cannot be applied to classic real-
world algorithms for PIF, e.g., priority ceiling and priority inheritance [25], be-
cause they need to dynamically change the priority of tasks. Since the definition
refers to the current priority of tasks, its meaning crucially depends on the al-
gorithms, which becomes difficult to understand.

A reasonable definition must be based on the original priorities assigned by
the programmer, reflecting the actual degree of urgency. Below we give a new
definition for PIF.

Definition 5.2 (Priority Inversion Freedom). PIF(Σ) holds, iff for any t,
tc, pr and prc, if t 6= tc, tc = CurTask(Σ), pr = OrgPr(t, Σ), prc = OrgPr(tc, Σ),
IsWait(t, Σ) and ¬IsOwner(tc, Σ), then pr � prc.
It says, if the current task tc does not own any shared resources, then its original
priority should be higher than (or equal to) any other waiting tasks t. Here
OrgPr(t, Σ) represents t’s original priority configured by users. IsWait(t, Σ) is

defined as ∃t′.t Σ−→+ t′, and ¬IsOwner(tc, Σ) means that the task tc does not
own any shared resources (e.g., mutexes).

The definition essentially says that the current task can have a lower priority
than waiting ones only if it holds resources that might be needed by others (so we
want to run it first to make the resource available as soon as possible). Note that
if each task eventually releases its shared resource (i.e., there is no deadlock),
the waiting task with higher priority will be eventually released and executed.
Therefore the definition prevents unbounded priority inversion [25].

Here we give an informal argument as a justification of our new definition.
Suppose we have tasks A1 ,. . ., Am, B1,. . .,Bn and C, whose original priorities
have the order: A1 > . . . > Am > B1 > . . . > Bn > C. Bi is the current running
task, and Am is waiting for the resource acquired by C. According to our PIF
definition, we are able to show that Am will not be permanently delayed by
the lower-priority tasks (B1, B2, . . . , Bn, C). That is, our PIF definition indeed
prevents unbounded priority inversion. Let us consider the following two cases
for the current running task Bi:

(1) If Bi does not own any resource, then the scenario obviously violates our
PIF definition, which requires that the current running task should have
higher original priority than the waiting one Am;

(2) If Bi owns some resources, with the assumption of termination of critical
regions, Bi eventually exits its outmost critical region, then we have the
following three different cases:
– If Bi is still the current running task, then it violates PIF as in case (1);
– If we switch to Bj , then one of the following two cases holds:
• Bj does not own resources, and it violates PIF as in (1);
• Bj owns some shared resources. Then we get to the same scenario as

(2) above where Bj now plays the role of Bi, but now the number of
tasks that are inside critical regions is decreased by 1. By induction
over the number of tasks inside of critical regions, Am can only be
delayed by the lower-priority tasks (B1, B2, . . . , Bn, C) with bounded
periods (bounded number of steps of running critical regions).

– If we switch to Ak instead, then it is OK because Ak has higher original
priority than Am.

We demonstrate the difference between the two notions by showing in Fig. 27
an example violating PIF. It is constructed based on the mutex implementation
in µC/OS-II, which is implemented with a simplified priority ceiling protocol [25]
and cannot prevent priority inversions when there is nested use of mutexes. The
counterexample justifies this limitation of nested mutex PIF failure of µC/OS-II.

Before going through the example, we first explain the protocol used for
µC/OS-II mutex. It provides two APIs to acquire (OSMutexPend(S)) and release
(OSMutexPost(S)) the mutex, P (S) and V (S) for short. Each mutex S has a
unique priority, and it saves its owner task’s identifier and current priority when
S is acquired. When a task t executes P (S), it executes the following steps: (1) t’s
current priority must be lower than that of S; (2) if S is available, t successfully
acquires S, sets S’s owner to t, and saves t’s current priority in S for the future
recovery; and (3) t is blocked if S is already owned by a another task t′. If t’s
current priority is higher than that of t′, we lift the current priority of t′ to S’s
priority. We omit the behavior of V (S) here, which is not needed to understand
the counterexample.

In Fig. 27, we show four tasks (A,B,C and D) and two mutexes (S1 and S2).
They all have their original priorities configured by users, following the order of
PrD < PrC < PrS2 < PrB < PrA < PrS1 . Suppose A,B and C are blocked and
waiting for the timer interrupt to wake up, and D is the only running task. First
D acquires S2, then C wakes up and preempts D. C acquires S1, and then at-
tempts to acquire S2 owned by D, thus gets blocked. Since PrD < PrC , following
the aforementioned protocol we lift D’s priority to that of S2 (PrS2). Then A
wakes up and becomes the highest priority task to run. It tries to acquire S1 (now
owned by C) and gets blocked. Then we lift C’s priority to that of S1 (PrS1).
Finally B becomes ready and has the highest priority to run. In each step we also
show the pairs of the current priority and the task status for corresponding tasks.

Time

Tasks

D

B

A

C

P(S2)

P(S1) P(S2)

P(S1)
C

D

Original Priority: PrD < PrC < PrS2 < PrB < PrA < PrS1

(PrD, rdy) (PrS2, rdy)

(PrC, waitD) (PrS1, waitD)

(PrA, waitC)(PrA, rdy)

(PrC, rdy)

(PrS2, rdy)

(PrB, rdy)

Mutex: S1, S2

Fig. 27. Violating PIF with Mutex in µC/OS-II

Now we have:

– Violation of the
old definition: C
waits for D, but
C’s current prior-
ity PrS1

is high-
er than that of D
(PrS2), shown in
the dashed box in
Fig.27;

– Violation of our
new definition:
B does not own
any mutexes, and
the waiting task
A’s original prior-
ity PrA is higher
than that of B (PrB), shown in the solid box.

In this example, unlike C and D that are going to release mutexes in bounded
number of steps, B does not own any mutexes and may run forever, therefore
the most urgent task A may never get a chance to run. This situation is called
unbounded priority inversion [25] and should be forbidden in real-time systems.
On the other hand, if we only have A, C and D, A only needs to wait for D

CurTask(Σ)
def
= Σ(tcbls)(ctid) CurPr(t, Σ)

def
=

{
pr if Σ(tcbls)(t) = (pr,)
⊥ otherwise

Own(t, eid,Σ)
def
= t ∈ dom(Σ(tcbls)) ∧Σ(ecbls)(eid) = (, (t,))

IsOwner(t, Σ)
def
= ∃eid.Own(t, eid,Σ) OrgPr(t, Σ)

def
=

pr if ∃eid.Own(t, eid,Σ)∧

Σ(ecbls)(eid) = (, (, pr))
pr if (¬IsOwner(t, Σ))∧

Σ(tcbls)(t) = (pr,)
⊥ otherwise

Wait(t, eid,Σ)
def
= Σ(tcbls)(t) = (,wait(mtx(eid),))

t
Σ−−→ t′

def
= ∃eid.Wait(t, eid,Σ) ∧ Own(t′, eid,Σ) ∧ t 6= t′

IsWait(t, Σ)
def
= ∃t′.t Σ−−→ t′ IsRdy(t, Σ)

def
= Σ(tcbls)(t) = (, rdy)

Fig. 28. Auxiliary Definitions for PIF

and C to release their mutexes before it is unblocked. There is no unbounded
priority inversion. This case is allowed in our new definition, but disallowed in
the old one (as shown in the dashed box).

The above counterexample happens because the priority lifting implemented
in µC/OS-II fails to consider nested use of mutexes. Below we show it could
satisfy PIF if we disallow nested use of mutexes.

Proving PIF of Mutex in µC/OS-II. We prove that the mutex in µC/OS-II en-
sures both the old and our new PIF definitions if there are no nested use of
mutexes. Some auxiliary definitions are given in Fig.28 based on the mutex
implementation of µC/OS-II. Here we present Theorem 5.3 based on our PIF
definition.

Theorem 5.3 (PIF without Nested Use of Mutexes). If Init(Σ), (A,OµC/OS-II) `
(T,∆,Σ) H

∗+3 (T ′, ∆′, Σ′), NoNCR(A,Σ, T,∆), and SchedProp(Σ′), then PIF(Σ′).

Where Init(Σ)
def
= ∀t ∈ dom(Σ(tcbls)).¬IsWait(t, Σ).

It says, for any application code A, client state ∆ and kernel abstract state Σ,
if initially there are no tasks waiting for mutexes (Init(Σ)), there is no nested
use of mutexes in the program (NoNCR(A,Σ, T,∆)), then for any T ′, ∆′ and
Σ′ generated during the execution, if Σ′ is consistent with the priority-based
scheduling (SchedProp(Σ′)), then it must satisfy PIF.

The following definition NoNCR(ηc, Σ, T,∆) is semantically defined by ex-
cluding program states that the execution of nested use of mutexes might get
to.

Definition 5.4 (No Nested). NoNCR(ηc, Σ, T,∆) holds, iff for any Σ′, T ′

and ∆′, if (A,OµC/OS-II) ` (T,∆,Σ) H
∗+3 (T ′, ∆′, Σ′), then NNest(Σ′) defined

as below.

NNest(Σ)
def
= ∀t, eid.(t ∈ dom(Σ(tcbls)) ∧ Own(t, eid,Σ))→

¬(IsWait(t, Σ) ∨ ∃eid′.eid′ 6= eid ∧ Own(t, eid′, Σ))
SchedProp(Σ′) given in Def.5.5 requires that the current running task always

has the highest priority among all the ready tasks. It can be guaranteed by the
highest-priority-based scheduling strategy of µC/OS-II. Here we use a simplified
OµC/OS-II that contains the PIF mutex as the only APIs. IsRdy(t, Σ) means that
the task t is ready in Σ. The proof is formalized in Coq.

Definition 5.5 (Highest-Priority-Based Scheduling).
SchedProp(Σ) holds, iff for any tc and prc, if tc = CurTask(Σ) and prc =
CurPr(tc, Σ), then IsRdy(tc, Σ) and for any t and pr, if t 6= tc, pr = CurPr(t, Σ)
and IsRdy(t, Σ), then pr � prc.

6 Verifying µC/OS-II

We have applied our framework to verify key modules (around 1300 lines of C
code without counting comments and empty lines) of µC/OS-II V2.52, including
the scheduler, the timer interrupt handler, mutexes, message queues, mail boxes,
semaphores, and the time management. These 1300 lines of C code verified in our
framework correspond to around 3250 lines of code in their original format (with
comments and empty lines) in the source files of µC/OS-II, including “ucos ii.h”,
“os q.c”, “os sem.c”, “os mbox.c”, “os mutex.c”, “os time.c”, “os core.c” and
“os cpu a.c”. The verified modules cover 63% of the frequently used APIs and
internal functions [2]. We ignore some synchronization APIs which have similar
functionality as the verified ones. Verification of task creation/deletion is still
ongoing work based on the presented framework.

Invariants. Because we are trying to verify a third-party developed OS kernel,
we need to spell out the invariants based on our understandings to kernel im-
plementations. It is more difficult than specifying a newly developed kernel with
verification in mind.

For instance, the most important data structure in µC/OS-II is a double-
linked-list of task control blocks (TCB). It is shared among the interrupt handlers
and tasks. The following assertion is used to specify the TCB list, and we use it
to demonstrate the efforts to define the invariants for µC/OS-II.

tcbdllseg(t, t1, t2, t3,L) ∗ tcbls�α ∗ OSRdyTbl(v̄) ∗Rtcbls(t,L, α, v̄)

tcbdllseg(t, t1, t2, t3,L) is inductively defined over L to specify a segment of
double-linked-list of TCBs. L is a list of v̄ containing all the values stored in the
TCB list segment, and t is the head pointer (the first task’s id). The abstract
TCB list αmaps task identifiers to their abstract TCBs. In addition to the spatial
parts, we also need to define the relation between the low-level TCB list L and
the high-level abstract TCB list α, denoted as Rtcbls(t,L, α, v̄). The relation is
parametrized with a value list v̄ containing the values stored in the ready table
OSRdyTbl, which is a bitmap for recording the status of tasks. Thus the status of
tasks in abstract TCBs depends on both L and v̄. There are two different ways

Framework Coq lines

Basic Libraries 32061
Machine & Logic 23095
Automated Tactics 21050

Total 76206

Certified µC/OS-II Coq lines

C Code Definitions 1824
Specifications 6012
Priority Inversion Freedom 9570
Libraries for µC/OS-II 62085
Auto. Generated Code 25357

Total 104848

Verified Modules lines of C Coq lines

Global Declarations 187 -

Message Queue 240 4537
Semaphore 166 2441
Mailbox 171 3326
Mutex 301 17331
Time Management 39 861
Timer Interrupt 17 443
Internal Functions 195 5447

Final Theorems - 501

Total 1316 34887

Table 1. The Verification Package

of defining the relation Rtcbls(t,L, α, v̄), one is to inductively define as below and
the other way is to define it with quantifications.

Rtcbls(t, v̄
′ ::L, {t abstcb}] α, v̄)

def
= RLtcb(t, v̄

′, abstcb, v̄) ∧Rtcbls(next(v̄′),L, α, v̄)

We find that the inductive definition can greatly simply our proofs. The auto-
mated technique [23] for separation logic also shows that inductively defining the
spatial parts and data constraints over the same inductive data lets automated
proofs for some complex data structures become possible.

Here RLtcb(t, v̄
′, abstcb, v̄) describes the correspondence relation between the

low-level TCB and its high-level abstract TCB. Note that OSRdyTbl’s value list
v̄ cannot be partitioned into each TCB with the inductive definition. Then we
need to prove that the update to OSRdyTbl for one task will not break the
relation for the others. If we verify a kernel developed by ourself, we may simply
avoid this burden by using a while-loop to search the TCB list for scheduling but
not using the fast bitmap. Thus the gap between the low-level data structures
and high-level abstract representation makes verification more difficult.

Modifications to the original code. Our verification is based on the original code
with some minor modifications. For instance, the API OSQPend(S) is used to
receive a message from a queue, and its original code does not check if the input
pointer S points to a valid event control block, because it assumes that the client
code always gets S by calling OSQCreate() (thus S should already be valid). We
drop this assumption about the client code. Correspondingly we insert code that
checks whether S is a valid pointer. If S is invalid a new error code is returned.
Similar modifications are made to some other modules too. The reason for doing
above modifications is that the contextual refinement proved in our verification
framework assumes arbitrary client code, while kernels are usually implemented
with assumptions over client code for efficiency.

Proof efforts. The Coq implementation consists of around 216,000 lines of code
and proofs in Coq8.4pl6. Table 1 gives a break down of the number of lines for
various components. Compiling the entire Coq package takes around 16 hours

on a machine with 3.6GHz cpu and 32G memory. The work takes us around 5.5
person years in total, including 4 person years for the framework and 1 person
year for verifying the first µC/OS-II module (Message Queue). With the facilities
(tactics, libraries and invariants etc.) being stabilized, verifying the remaining
modules (around 900 lines of C code) only takes us around 6 person months.

The most challenging part is to verify the timer interrupt handler, which
traverses the entire TCB list and updates task status in each TCB block. It
needs to access all the shared data structures in µC/OS-II. Several different
updates to shared data structures make the loop invariant quite complicated.

Also verifying an existing OS kernel is more difficult than verifying a new
one written for verification purpose. When verifying µC/OS-II the major diffi-
culty comes from the gap between the low-level concrete data structure and the
high-level abstract representation. For instance, µC/OS-II uses a smart bitmap
algorithm to record whether a task is in the waiting queue. The implementa-
tion requires us to establish a subtle consistency relation between the low-level
bitmap and the high-level abstract waiting queue. The verification would have
been much simpler if the waiting queue is simply implemented as a linked list.

Coq tactics. Proof automation is essential to improve the productivity. We de-
velop tactics for automatically proving relational separation logic assertions and
generating verification conditions based on existing techniques [7, 21, 5]. They
do forward reasoning for statements, including function calls and primitives en-
tering and exiting critical regions, etc. Also some domain-specific tactics are
implemented for individual data structures used in µC/OS-II, including ones for
the arithmetic properties of Int32 and bitmaps. Thanks to these tactics, the ratio
of Coq proof scripts to the verified C code is around 26:1. Another advantage of
the tactics is that they can extract lemmas independent of program contexts for
verifying functionality of code. Users can verify code using the tactics without
knowing much about the underlying framework.

7 Related Work and Conclusion

There have been a number of OS verification projects, including seL4 [16, 15],
Verisoft [4], VCC/VeriSoftXT [9, 3], Verve [29], and CertiKOS [13, 8]. Most of
them have no or limited support of preemption and multi-level interrupts.

seL4 [16, 15] is one of the milestone OS kernel verification projects. The veri-
fication is fully mechanized in Isabelle/HOL. The kernel of seL4 does not support
general preemption. Instead, tasks are preemptible only at specific points. There-
fore the code verified is mostly sequential. On the other hand, the seL4 project
has verified rich features and properties such as virtual memory, real-time prop-
erties and security properties, which are not done in our work.

The Verisoft project also verifies OS microkernels [4] in Isabelle/HOL, but
the CVM model used there does not permit interrupts inside the kernel. Its
successor project, Verisoft XT [3], uses VCC [9] to verify the commercial Hyper-V

hypervisor. VCC supports verification of concurrent C code by inserting auxiliary
code and ghost states. The proofs have a refinement flavor, but VCC does not
establish contextual refinement as what we do. Also it is unclear how VCC is
applied to verify multi-level nested interrupts in hypervisors.

Verve [29] combines a type-safe kernel with a minimal hardware abstraction
layer. The kernel is concurrent, but the properties verified are mostly about type
safety, much weaker than our contextual refinement property. Also Verve simply
squashes multiple interrupt levels into a single level and does not really handle
multi-level interrupts. VCC/VerisoftXT and Verve use the Z3 SMT solver [10] for
better automation, while we use Coq which generates machine-checkable proofs.
Also the soundness of our program logic is proved in Coq. Therefore the trusted
computing base (TCB) of our approach is smaller.

Gu et al. [13] verify the mCertiKOS hypervisor. Their kernel is sequential.
Recently, Chen et al. [8] propose a framework for building certified interruptible
OS kernels (based on mCertiKOS) with device drivers. Their framework does not
support preemptive concurrency as ours, and it requires that interrupt handlers
for device drivers and non-handler kernel code should not share any state.

Gotsman and Yang [12] developed a program logic based on CSL, which
decomposes the verification of preemptive kernels into verifying the scheduler
and the tasks. Their proofs are on-paper only and not mechanized. The machine
model does not support multi-level interrupts, also their program logic is used
to prove partial correctness, not contextual refinement as we do.

Conclusion. We have developed a practical verification framework for general
verification purpose of preemptive OS kernels with multi-level interrupts. Cor-
rectness of the OS kernel is formalized as a contextual refinement between the
low-level concrete implementations and the high-level specifications. As far as we
know, our work is the first to establish contextual refinement for system APIs of
a preemptive OS kernel. We have applied the framework to verify key modules
and PIF of µC/OS-II, a commercial embedded real-time OS.

It is worth noting that although our verification framework is developed to
verify µC/OS-II, it is a general verification framework and most of its building
blocks can be reused to verify other OS kernels. As shown in Fig. 2, the small-
step semantics for the C subset, the program logic and the tactics are all general
and mostly independent of the µC/OS-II verification project. A potential limi-
tation is that the interrupt mechanism in our operational semantics is modeled
specifically based on the Intel 8259A interrupt controller, and the program logic
rules for interrupts are designed accordingly. However, the logic rules follow the
general ownership transfer idea from CSL. With a different processor and inter-
rupt mechanism, even though we may need to change the current inference rules
for interrupt primitives, we can apply the same ownership transfer idea, and the
required change should be superficial. Another limitation is that our C subset
is chosen based on the µC/OS-II code. In particular, it does not allow function
pointers, which requires the support of higher-order functions in the logic.

References

[1] The coq development team: The Coq proof assistant. http://coq.inria.fr.
[2] The real-time kernel: µC/OS-II. http://micrium.com/rtos/ucosii/overview.
[3] The Verisoft XT Project, 2007. http://www.verisoftxt.de.
[4] E. Alkassar, W. Paul, A. Starostin, and A. Tsyban. Pervasive verification of an

OS microkernel: Inline assembly, memory consumption, concurrent devices. In
VSTTE, pages 71–85, 2010.

[5] A. W. Appel. Tactics for separation logic, 2006. http://www.cs.princeton.edu/

~appel/papers/septacs.pdf.
[6] O. Babaoglu, K. Marzullo, and F. B. Schneider. A formalization of priority inver-

sion. Real-time Systems, 5:285–303, 1993.
[7] J. Cao, M. Fu, and X. Feng. Practical tactics for verifying C programs in coq. In

CPP, pages 97–108, 2015.
[8] H. Chen, N. Wu, Z. Shao, J. Lockerman, and R. Gu. Toward compositional veri-

fication of interruptible os kernels and device drivers. In PLDI, page (to appear),
2016.

[9] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C.
In TPHOLs, pages 23–42, 2009.

[10] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages
337–340, 2008.

[11] X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying low-level programs with
hardware interrupts and preemptive threads. In PLDI, pages 170–182, 2008.

[12] A. Gotsman and H. Yang. Modular verification of preemptive OS kernels. J.
Funct. Program., 23(4):452–514, 2013.

[13] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N. Wu, S.-C. Weng, H. Zhang,
and Y. Guo. Deep specifications and certified abstraction layers. In POPL, pages
595–608, 2015.

[14] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elka-
duwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-
wood. seL4: Formal verification of an operating-system kernel. Commun. ACM,
53(6):107–115, 2010.

[15] G. Klein, J. Andronick, K. Elphinstone, T. C. Murray, T. Sewell, R. Kolanski, and
G. Heiser. Comprehensive formal verification of an OS microkernel. ACM Trans.
Comput. Syst., 32(1):2, 2014.

[16] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elka-
duwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-
wood. sel4: Formal verification of an os kernel. In SOSP, pages 207–220, 2009.

[17] X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–
115, 2009.

[18] H. Liang and X. Feng. Modular verification of linearizability with non-fixed lin-
earization points. In PLDI, pages 459–470, 2013.

[19] H. Liang, X. Feng, and M. Fu. A rely-guarantee-based simulation for verifying
concurrent program transformations. In POPL, pages 455–468, 2012.

[20] H. Liang, X. Feng, and Z. Shao. Compositional verification of termination-
preserving refinement of concurrent programs. In CSL-LICS, pages 65:1–65:10,
2014.

[21] A. McCreight. Practical tactics for separation logic. In TPHOLs, pages 343–358,
2009.

http://coq.inria.fr
http://micrium.com/rtos/ucosii/overview
http://www.verisoftxt.de
http://www.cs.princeton.edu/~appel/papers/septacs.pdf
http://www.cs.princeton.edu/~appel/papers/septacs.pdf

[22] P. W. O’Hearn. Resources, concurrency and local reasoning. In CONCUR, pages
49–67, 2004.

[23] X. Qiu, P. Garg, A. Stefanescu, and P. Madhusudan. Natural proofs for structure,
data, and separation. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013,
pages 231–242, 2013.

[24] J. Sevćık, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and P. Sewell. Compcerttso:
A verified compiler for relaxed-memory concurrency. J. ACM, 60(3):22, 2013.

[25] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An ap-
proach to real-time synchronization. IEEE Transactions on Computers, 39:1175–
1185, 1990.

[26] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and hoare-style rea-
soning in a logic for higher-order concurrency. In ICFP, pages 377–390, 2013.

[27] A. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer. Logical relations
for fine-grained concurrency. In POPL, pages 343–356, 2013.

[28] F. Xu, M. Fu, X. Feng, X. Zhang, H. Zhang, and Z. Li. A practical verification
framework for preemptive OS kernels (technical report and coq implementations),
May 2016. http://staff.ustc.edu.cn/~fuming/research/certiucos.

[29] J. Yang and C. Hawblitzel. Safe to the last instruction: automated verification of
a type-safe operating system. In PLDI, pages 99–110, 2010.

http://staff.ustc.edu.cn/~fuming/research/certiucos

	A Practical Verification Framework for Preemptive OS Kernels (Technical Report)

