
IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 2, APRIL 2025 479

An Anatomy of Token-Based Congestion Control
Kexin Liu , Chang Liu, Qingyue Wang, Zhiqiang Li, Lu Lu , Member, IEEE,

Xiaoliang Wang , Member, IEEE, Fu Xiao , Senior Member, IEEE, Ying Zhang , Senior Member, IEEE,
Wanchun Dou , Guihai Chen , Fellow, IEEE, and Chen Tian , Senior Member, IEEE

Abstract— Congestion control protocols are crucial for
optimizing the performance of datacenter network applica-
tions. Although reactive congestion control (RCC) protocols are
commonly used in commercial datacenters, researchers have
been exploring token-based proactive congestion control (TCC)
protocols to further enhance network performance. Despite the
development of numerous TCC variants, there has not been
a thorough examination of the design space of TCC protocols
until now. This paper aims to address this gap by introducing a
framework for understanding the design choices within the TCC
approach for TCC protocols. By analyzing various design aspects
of TCC approaches, we create a novel TCC protocol called
TOCC. At the central of TOCC design is that it leverages con-
gestion control mechanisms over tokens. To implement TOCC,
we tackle several challenges and integrate it into NP-based smart
NICs. Comparing TOCC with state-of-the-art TCC and RCC
protocols through extensive large-scale simulations and testbed
evaluations, we find that TOCC consistently achieves low latency
across different scenarios. Moreover, TOCC significantly reduces
buffer occupancy by 4.8 times compared to existing methods, and
during incast scenarios, it decreases flow completion time by up
to 90%.

Index Terms— Datacenter networks, token-based proactive
congestion control, NP-based smart NICs.

I. INTRODUCTION

THE performance of applications in datacenter networks
heavily relies on the effectiveness of congestion control

protocols [1], [2], [3], [4]. These protocols can be broadly
classified into two categories: reactive and proactive. Reactive
congestion control (RCC) protocols are commonly imple-
mented in commercial datacenters. In RCC protocols, senders
utilize the network bandwidth by transmitting data at line

Received 17 December 2023; revised 30 July 2024; accepted 6 October
2024; approved by IEEE TRANSACTIONS ON NETWORKING Editor
S. Kompella. Date of publication 1 January 2025; date of current version
18 April 2025. This work was supported in part by the Nanjing University-
China Mobile Communications Group Co., Ltd., Joint Institute; in part by
the Key Project of Jiangsu Province fundamental Research Program under
Grant BK20243053; in part by the National Natural Science Foundation of
China under Grant 62325205 and Grant 62172204; in part by the Fundamental
Research Funds for the Central Universities; in part by the Collaborative
Innovation Center of Novel Software Technology and Industrialization; and in
part by the Jiangsu Innovation and Entrepreneurship (Shuangchuang) Program.
(Corresponding authors: Xiaoliang Wang; Lu Lu.)

Kexin Liu, Chang Liu, Qingyue Wang, Xiaoliang Wang, Wanchun Dou,
Guihai Chen, and Chen Tian are with the State Key Laboratory for Novel
Software Technology, Nanjing University, Nanjing 210023, China (e-mail:
waxili@nju.edu.cn).

Zhiqiang Li and Lu Lu are with China Mobile Research Institute, Beijing
100053, China (e-mail: lulu@chinamobile.com).

Fu Xiao is with the School of Computer Science, Nanjing University of
Posts and Telecommunications, Nanjing 210003, China.

Ying Zhang is with Meta, Menlo Park, CA 94025 USA.
Digital Object Identifier 10.1109/TNET.2024.3491763

rate. When congestion occurs and buffers start to fill up,
congestion signals are either sent back to or detected by the
senders [5], [6], [7], [8], [9]. Upon receiving these signals,
senders reduce their transmission rate and attempt to recover
later. RCC protocols have inherent limitations in handling
bursty flows [10]. To address these limitations, a promising
branch of protocols called token-based proactive congestion
control (TCC) has emerged as a solution. TCC protocols aim
to overcome the challenges posed by bursty flows and improve
overall performance in datacenter networks.

Token-based proactive congestion control protocols, such
as ExpressPass [10], [11], Homa [12], [13], NDP [14],
pHost [15], and Aeolus [16], leveraging the transmission
of token packets from receivers to allocate bandwidth for
future data transmissions. Actual packet transmission occurs
only after senders receive the bandwidth allocation signal.
These TCC protocols feature diverse design choices. For
example, ExpressPass solely transmits scheduled packets and
eliminates incast issues by sacrificing the initial round-trip
time (RTT). In contrast, protocols like Homa, NDP, and
Aeolus send unscheduled packets before token packets arrive,
preventing waste of the first RTT. However, these methods still
struggle with completely alleviating burstiness in incast traffic
scenarios.

To propose an enhanced TCC protocol, we should thor-
oughly investigate the fundamental design space of current
TCC protocols. We seek to assess various design choices
under different scenarios and offer insights on when and why
specific design aspects lead to better performance. By examin-
ing these design choices in detail, we can gain a more profound
understanding of their effects and optimize TCC protocols for
improved network functionality.

Firstly, we introduce an analytical framework for TCC
called the “Anatomy Framework.” This framework method-
ically breaks down the design space into multiple aspects,
sets up relevant metrics, and thoroughly examines existing
literature on TCC. The term “anatomy” is used metaphor-
ically, similar to how medical science analyzes a subject’s
intricate details. Creating such a framework presents several
challenges:

• Each design dimension should be defined relatively inde-
pendently and orthogonally for a comprehensive analysis.

• Determining the optimal granularity of design choices
is difficult due to potential correlations between certain
design aspects; hence, careful consideration is necessary
to distinguish separate choices within each dimension.

2998-4157 © 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanjing University. Downloaded on April 20,2025 at 03:14:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0599-2320
https://orcid.org/0009-0000-5740-9489
https://orcid.org/0000-0002-3410-8621
https://orcid.org/0000-0003-1815-2793
https://orcid.org/0000-0003-2736-5694
https://orcid.org/0000-0003-4833-2023
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0003-2710-7628

480 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 2, APRIL 2025

• Isolating the effects of individual design choices is crucial
for accurately assessing their advantages and disadvan-
tages. Analyzing each choice in isolation offers a more
detailed understanding of their implications.

After addressing the aforementioned challenges, we develop
the Anatomy Framework, which enables the systematic dis-
assembly of TCC into five fundamental components (i.e.,
transmission of unscheduled packets, token generation, in-
network rate-limiters, and total volume control of token).

Based on the insights derived from the Anatomy Frame-
work, we propose a novel token-based proactive congestion
control protocol called Token-oriented Congestion Control
(TOCC). At the central of TOCC design is that it lever-
ages congestion control mechanisms over tokens. This unique
approach enables more efficient congestion management com-
pared to that of the congestion control over data. We
thoroughly describe multiple scenarios where TOCC can
effectively apply token-based congestion control, subsequently
enhancing its performance in real-world deployment settings.
Besides, TOCC takes on several key components from the
anatomy framework of TCC and offers customization capabili-
ties tailored to various scenarios (e.g., incast and lightly-loaded
networks). Our design is not a merely assemblage of successful
design choices from existing protocols. It requires careful
consideration since not all design choices are compatible (e.g.,
rate-based token generation and total volume control of token)
or work well in combination (e.g., no unscheduled phase and
data-driven token generation); thus TOCC leverages adapta-
tions and compatibility assessments for smooth integration.

We implement TOCC on NP-based smart NICs by address-
ing various challenges, such as unforeseen performance
deterioration caused by the limitation on the packet processing
rate of programmable NICs, implementation complexity, and
restricted hardware capabilities. Overcoming these hurdles
demanded finding a balance between practicality and high
performance. To our knowledge, this represents the first time
TCC has been implemented on NP-based hardware smart
NICs.

We conduct a thorough evaluation of TOCC through both
NS3 simulations and testbed experiments. TOCC converges
rapidly, showcasing its capability to promptly adjust to diverse
network conditions. Moreover, TOCC demonstrates resilience
to parameter settings and places fewer demands on conges-
tion control algorithms in terms of convergence speed and
congestion detection. This makes TOCC more appropriate
for large-scale implementation in production environments.
Additionally, the evaluation reveals that TOCC demonstrates
enhanced flexibility in handling bursty traffic scenarios such as
incast. It decreases flow completion time by 90% and buffer
occupancy by 4.8 times while maintaining stable and high
throughput. These findings emphasize the strong performance
of TOCC in enhancing network efficiency and overall appli-
cation experience.

II. BACKGROUND

Reactive congestion control (RCC). As the name of
RCC indicates, an RCC sender transmits a portion of packets

(usually at line rate) when a new flow arrives and then adjusts
the transmission rate according to the congestion signals.

Built upon DCTCP [17] and QCN [18], [19], DCQCN [5],
[20] uses Explicit Congestion Notification (ECN) to detect
in-network congestion. TIMELY [8] uses Round-Trip Time
(RTT) variations as congestion signals. Swift [9] measures
RTT in a more precise way, i.e., it decomposes end-to-end
RTT to separate fabric delay from host delay. HPCC [6]
leverages in-band network telemetry (INT) to obtain precise
link load information, which makes the rate adjustment more
accurate. PowerTCP [7] captures both absolute network state
and variations through INT to obtain the bottleneck link state.
Bolt [21] reduces the congestion detection loop by sending
back notifications at switches directly to the senders.

However, with the rapid growth of link bandwidth (i.e.,
from 10 Gbps to 100 Gbps), the bandwidth-delay product
(BDP) is increased accordingly. It results in datacenter traffic
becoming more bursty [16]. A larger fraction of flows can be
sent out even before RCC takes effect. Moreover, the switch
buffer does not catch up with the increasing links, making it
harder for switches to absorb bursty traffic [22], [23].

Token-based Proactive congestion control (TCC). A
TCC receiver transmits token packets to allocate bandwidth
for flows (e.g., credit in ExpressPass, and PULL in NDP).
When a token packet is received, the sender can transmit a
corresponding full-length scheduled data packet.

In ExpressPass [10], [11], all data are scheduled. When a
new flow arrives, a control packet is sent from the sender to
notify the receiver. A receiver then transmits token to compete
for bandwidth before arriving at senders. The bandwidth that
tokens can consume is limited to around 5% of the link
bandwidth to guarantee that the bandwidth consumed by
scheduled packets does not exceed the network bottleneck.
The rate is calculated according to the size of a token and a
full-length data packet (i.e., 84

1538+84 ≈ 5%). Zero packet loss
and low buffer occupancy are achieved, at the cost of wasting
the first Round-Trip Time (RTT) waiting for tokens.

To make full use of the first RTT, other state-of-art TCCs
(i.e., Homa, NDP, and pHost) transmit a portion of unsched-
uled packets before the bandwidth allocation packets (i.e.,
tokens) are received. Homa [12] mainly aims to optimize RPC-
like scenarios [24], [25]. It leverages the in-network priority
queue and Shortest-Remaining-Time-First (SRTF) strategy on
the host to optimize the flows’ FCT. NDP [14] uses cut-
payload method to cut the payloads of data packets when the
switch queue length exceeds a small threshold and the packet
header is transmitted to the receiver to exactly notify the packet
loss. Homa and NDP assume that in-network congestion is
rare. Thus, tokens do not compete for bandwidth at the
network bottleneck. Instead, they act as scheduling signals
from receivers to senders. Aeolus [16] is a patch to TCC, and
it aims to solve the first-RTT problem. It drops unscheduled
packets selectively when the queue length exceeds a small
threshold, i.e., 8 KB, by leveraging the Active Queue Manage-
ment (AQM) feature of commodity datacenter switches. This
ensures that scheduled packets are not dropped due to buffer
overflow. Especially when Aeolus is patched to ExpressPass,

Authorized licensed use limited to: Nanjing University. Downloaded on April 20,2025 at 03:14:00 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ANATOMY OF TOKEN-BASED CONGESTION CONTROL 481

TABLE I
DESIGN OPTIONS OF TCC

unscheduled packets are generated. In this paper, we use
EP+Aeolus to denote ExpressPass patched with Aeolus.

III. ANALYSIS METHODOLOGY

Our goal is to analyze the relative merits of the design
choices made by various TCCs. We do this by firstly devel-
oping a framework of TCC (§ III-A). Then, we use reasoning
and conduct variable-controlling simulations across multiple
topologies and traffic patterns (§ III-B).

A. TCC Characterization Framework

We should isolate the effects of each individual TCC design
choices as far as possible to provide convenience for further
controlled experiments. At the same time, we should be careful
that some choices are coupled. By considering these targets
and constraints, we develop a characterization framework of
TCC. It divides the components of TCC into two phases,
i.e., unscheduled and scheduled phases, which can be further
anatomized into five key design points (P1-P5) as shown in
Table I.

Unscheduled Phase. There are three choices when handling
the unscheduled phase (P1). When a new flow arrives, the
sender can wait for bandwidth allocation before sending data
or initialize a portion of unscheduled packets without waiting
for bandwidth allocation. After that, the switch can transmit
unscheduled packets normally or drop unscheduled packets
actively when the queue length exceeds a small threshold to
avoid disturbing the scheduled phase (§ IV-A).

Scheduled Phase. The transmission of scheduled packets is
triggered by token packets. When a token packet is received
by the sender, a corresponding scheduled packet is transmitted.
The design choices of token packets can be anatomized into
the way to generate token (P2), the rate-limiter on tokens (P3),
the total volume control of tokens (P4), and the congestion
control on tokens (P5).

Token packets can be generated based on a given rate
(i.e., rate-based) or upon receiving a data packet (i.e., data-
driven) (§ IV-B). Rate-limiters on tokens can ensure that
tokens arriving at senders do not trigger scheduled packets
exceeding bottleneck bandwidth (§ IV-C). Total volume con-
trol of tokens ensures the number of tokens generated exactly
matches the scheduled packets to be transmitted (§ IV-D). The
congestion control (CC) algorithms on token packets adjust the
transmission rate of tokens according to the token queue length
(§ IV-F). When using rate-based token generation, configuring
rate-limiters and a small token queue on switches is a necessity
to drop excessive tokens to reduce bandwidth waste.

B. Evaluation Harness
Performance isolation. For each TCC protocol, we isolate

the effects of its multiple design points on performance
as far as possible by controlling the variable when setting
up simulation scenarios and using contrastive analysis. For
instance, when analyzing three design choices of transmitting
unscheduled packets, Memcached traffic made up of tiny flows
are used. Hence, only the unscheduled phases are involved,
and the interference of design choices on scheduled phases
can be avoided. When analyzing the effectiveness of different
ways to generate tokens, workloads with relatively large flows
(e.g., Cache Follower and Web Search) are used. And the tail
latency performance is compared since it is dictated by the
scheduling phase.

Topologies and Workloads. We construct simulations
under different scenarios to make our findings more compre-
hensive. Four topologies(§ VI) and four realistic traffic widely
used in previous works are used to conduct a wide range
of evaluations [12], [16], [17], [26]. As shown in Figure 1,
the workloads cover a wide range of flow sizes. Memcached
consists of tiny flows, where more than 90% fraction of flows
is smaller than one full-length packet. Web Server and Cache
Follower are mostly mixed of small (< 100 KB) and medium-
sized (100 KB-1 MB) flows. Web Search is mixed of medium
and large (>1 MB) flows. Performance under different loads
(e.g., 0.2-0.8) is conducted (Appendix B), and we choose
a load of 0.8 to best reflect the performance variations of
different TCCs.

Buffer Model. For fairness comparison, the shared buffer
model is used in our evaluation (except for NDP and Aeolus
since they set a small drop threshold on the data queue to
avoid a large queuing delay). For Homa, a relatively large
buffer size (e.g., 35 MB) is used to reduce its packet loss.
For RCC protocols, PFC [27] is used to ensure packet loss
does not occur. And we also discuss the limitations of TCCs
by depicting how TCCs performs when facing packet drop
(§ VI).

Parameter Settings. For different protocols, authors’ rec-
ommended parameters are used. And to ensure fairness of the
comparison, we use the same load balance protocols (e.g., per-
flow ECMP) in our evaluations.

Metrics. We choose multiple performance metrics to best
reflect the effects of the validating design point. Four major
performance metrics are presented: (i) average /99-tail Flow
Completion Time (FCT), (ii) average/99-tail slowdown, where
slowdown denotes the ratio of the actual FCT divided by
the best possible time required to complete the flow on an
unloaded network, (iii) maximum buffer occupancy, and (iv)

Authorized licensed use limited to: Nanjing University. Downloaded on April 20,2025 at 03:14:00 UTC from IEEE Xplore. Restrictions apply.

482 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 2, APRIL 2025

Fig. 1. Flow size distributions of typical workloads.

real-time throughput. When analyzing the design choices,
implementation flexibility is also considered.

IV. TCC ANATOMY

In this section, we anatomize different design choices of
TCC approaches according to TCC framework (§ III-A).
Table I summarizes different design choices of them. And
then, we present our findings on different design choices by
following the guidance of the analysis methodology (§ III-B).

A. Transmission of Unscheduled Packets

As shown in Table I (P1), there are typically three categories
of choices regarding the unscheduled packet transmission.

Absence of the unscheduled packet. ExpressPass does not
transmit unscheduled packets, and all its packets are scheduled
by token packets sent from receivers.

Make full use of the first-RTT. Instead of wasting the
first RTT, Homa/NDP transmits a portion (e.g., one BDP) of
unscheduled packets when a new flow arrives.

Back-off to send unscheduled packets without disturbing
scheduled packets. Aeolus can be patched to TCCs. When a
new flow arrives, it transmits a portion of unscheduled packets
at the line rate. When the queue length of the switch’s output
port exceeds a small threshold, e.g., 8KB, unscheduled packets
are dropped selectively. Hence, scheduled packets are not
likely to be interfered by unscheduled packets. This ensures
that scheduled packets are not dropped due to buffer overflow.

Pros and Cons discussion. ExpressPass achieves an ultra-
low buffer occupancy and handles incast scenarios well by
scheduling every packet. However, it sacrifices the utiliza-
tion of new flows’ first RTT. For tiny flows whose size
is smaller than one full-length packet, their FCTs could be
tripled. Figure 2(a) shows the slowdown performance under
the Memcached workload. ExpressPass does not perform well
compared with those that transmit unscheduled packets (e.g.,
Homa and NDP).

It is not always a good choice to fully use the unsched-
uled phase. Figure 2(c) shows that under Cache Follower
workloads, the buffer occupancy of Homa can reach 20 MB.
A large buffer occupancy faces the risk of packet drop. Homa
leverages in-network priority queues to split flows according
to their size. The benefit of priority scheduling and queuing
gradually vanish with a large buffer occupancy. When in-
network priority queues are not efficient, or the flow size is
unknown, the performance of small flows can be further hurt
by a large buffer occupancy.

When small flows dominate the traffic, it could be in vain to
transmit unscheduled packets and selectively drop it afterwards
since it induces a large drop ratio. It can be seen from

Figure 2(a) that, compared with ExpressPass, the performance
of EP+Aeolus even downgrades. It is also unfriendly for NICs
by forcing them to handle packet-reordering caused by packet
loss and retransmitting a large number of data packets, which
complicates the implementation logic and wastes the packet
per second (pps) on NICs.

Along with the high link bandwidth (e.g., 100 Gbps / 400
Gbps), BDP is much larger than before. Nevertheless, the
average flow size does not change obviously. On the one
hand, there can be more flows whose size can be fit within
one BDP, making the flows’ first-RTT time more critical.
Figure 2(b) shows that under 100 Gbps links, the perfor-
mance gap between ExpressPass and Homa/NDP becomes
more significant than that under 10 Gbps links. EP+Aeolus
achieves better performance than ExpressPass, which contra-
dicts the trends in 10 Gbps links. These results indicate that
it is more costly to give up the unscheduled phase. On the
other hand, there can be more unscheduled packets using
bandwidth without allocation, which should be handled more
carefully to avoid buffer overflow. As shown in Figure 2(d),
under 100 Gbps links, Homa occupies a large buffer.

Finding 1. The unscheduled phase should be configurable
according to the traffic and link bandwidth characteristics of
datacenter (§ V-A).

B. Token Generation

As shown in Table I (P2), the transmission of tokens can
be based on an adjusted rate (i.e., rate-based) or triggered by
data packets (i.e., data-driven).

Rate-based token generation. ExpressPass leverages a
rate-based way to generate tokens. When a sender notifies the
receiver that a new flow arrives, the receiver starts to send
tokens for the flow based on a rate and stops sending tokens
when all data of the flow are received (or when a dedicated
FIN packet arrives). Since when tokens are generated in a
rate-based manner, a large number of unnecessary tokens
can be generated. If these excessive tokens arrive at the
sender, it indicates that useful tokens are delayed, which
can result in serious bandwidth waste. Hence, the rate-based
token generation is coupled with in-network rate-limiters and a
small token queue length to alleviate bandwidth waste. Tokens
compete for 5% bandwidth at the network bottleneck. Then,
tokens are dropped when the token queue length exceeds a
given small threshold (i.e., eight-packet length).

Data-driven token generation. Homa leverages a data-
driven way to generate token packets, i.e., only when a data
packet is received can a corresponding token be transmitted to
the sender. In NDP, when the receiver receives a data packet
or a packet header notifying the data drop, the receiver adds
a PULL packet to its pull queue. The pull packet is then sent
to the corresponding sender to trigger a corresponding data
packet.

Pros and cons discussion. Rate-based token generation
induces token loss, which leads to four problems.

(i) Tokens for a flow can be dropped repeatedly. It can cause
a flow to wait for tokens for a long time, which especially
prolongs the FCTs of small flows. Figure 2(a) shows the
performance under Memcached. NDP and EP+Aeolus both

Authorized licensed use limited to: Nanjing University. Downloaded on April 20,2025 at 03:14:00 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ANATOMY OF TOKEN-BASED CONGESTION CONTROL 483

Fig. 2. The investigation of the key design options of TCC. The deep/light color for each bar represents the average/99th-tail value, respectively. The left/right
y-axis of (a)-(d) denotes the value of FCTs and the maximum buffer occupancy, respectively. The triangles of (a)-(d) denote the maximum buffer occupancy.

Fig. 3. The investigation of the key design options of TCC. The deep/light color for each bar of (c) and (d) represents the average/99th-tail value, respectively.
The left/right y-axis of (c) denotes the value of FCTs and the bandwidth utilization, respectively. The triangles of (c) denote the bandwidth utilization.

leverage the active drop of unscheduled packets, while NDP
shows a better performance. For that, the rate-based token
mechanism of ExpressPass causes redundant drops of tokens.

(ii) Because of token loss, the receiver of ExpressPass
can not stop sending tokens until all data packets or the
stop-sending notification is received. It results in the last-
RTT waste of tokens, i.e., at least one RTT worth of
tokens for each flow cannot trigger data packets. It wastes
the bandwidth on both receiver and sender sides. Excessive
tokens waste the bandwidth reserved for tokens. Moreover,
when useless tokens arrive at senders, it indicates that other
useful tokens that should have triggered data packets are
dropped. It could downgrade the network throughput and
prolong the tail latency of flows. Figure 2(c) compares the
performance of different TCCs under Cache Follower. The
tail latency of flows in ExpressPass is prolonged. Benefiting
from the data-driven mechanism, Homa achieves better tail
latency.

(iii) The random drop of tokens causes unfairness issues,
especially synchronized flows. Although ExpressPass claims
that rate-based token generation can achieve fairness perfor-
mance by uniform random dropping of tokens at switches,
we found that unfairness could happen when flows are
synchronized. To test the fairness of two token generation
methods, simulations are conducted in the case where eight
flows of the same size pass through the same bottleneck one
by one and leave afterwards. Figure 3(a) and 3(b) show the
result. For ExpressPass, a relatively large jitter on throughput
is observed, mainly caused by token loss. Homa achieves
better fairness (Note that in this scenario, flows have the same
priority in Homa; hence in-network priority does not interfere
the fairness.)

(iv) Rate-based token generation consumes the pps of NICs,
which puts much pressure on NICs.

The main drawback of data-driven token generation mainly
lies in that there should be a token recovery mechanism to
handle rare token loss, i.e., token packet corruption or config-
uration error on switches. It can be overcome by leveraging
the packet loss recovery mechanism (§ V-B).

Finding 2. Data-driven token generation achieves better
tail latency and fairness performance.

C. In-Network Rate-Limiter
TCCs can choose whether to leverage in-network rate-

limiters on tokens, as depicted in Table I.
Absence of rate-limiters. In Homa and NDP, no in-network

congestion is assumed, so no rate-limiter is used. Upon a token
is transmitted by the receiver, it passes through the network
without bandwidth competition.

Presence of rate-limiters. In ExpressPass, NICs of both
switches and end-hosts maintain rate-limiters on the token
queue. When a token passes through the network bottleneck,
it should compete for the rate-limited bandwidth with other
tokens. Only tokens win from bandwidth competition, i.e.,
those arriving at the sender can successfully trigger data
transmission. It ensures that the bandwidth consumed by
scheduled packets does not exceed the network bottleneck.

Pros and cons discussion. TCCs are particularly attractive
as they enable fast convergence and low buffering by letting
senders and receivers accurately estimate the available band-
width for a given flow. However, receivers transmit tokens in
a distributed way, based on their own link bandwidth. The
total bandwidth allocated by tokens could exceed the network
bottleneck, which can in turn result in buffer built-up [16].
This is the reason why some TCCs (e.g., Homa and NDP) fall
short in presence of bottlenecks in the network core, e.g., due
to oversubscription or load imbalance. As shown in Figure 2(c)
and 2(d), under Cache Follower workloads which consists
of the scheduling phase, the buffer occupancy of Homa is
extremely large (e.g., reach up to 20 MB-30 MB). And the
performance of NDP is downgraded because it induces a
massive number of packet loss and its retransmission mecha-
nism does not consider the existence of in-network congestion,
finally resulting in a severe packet drop ratio (around 30%).

In-network rate limiters on tokens provide centralized coor-
dination of bandwidth allocation for different flows implicitly.
By rate limiting the transmission of tokens as a whole,
it regulates the number of tokens arriving at senders in each
time unit accurately. Then senders in turn transmit data that
exactly match the bottleneck link bandwidth.

Generally, rate-limiter is supported in commercial data-
center switches [28], [29], [30]. However, there are some
concerns about using a rate-limiter. (i) Rate-limiter induces

Authorized licensed use limited to: Nanjing University. Downloaded on April 20,2025 at 03:14:00 UTC from IEEE Xplore. Restrictions apply.

484 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 2, APRIL 2025

token built-up. Fortunately, the size of a token packet is
small, which induces a relatively small buffer occupancy. And
congestion control on tokens can be leveraged to mitigate the
problem (§ IV-F). (ii) Whenever the bandwidth reserved for
tokens is used, scheduled packets utilize the left 95% link
bandwidth at most. There are corner cases where 5% band-
width is wasted when only one-sided traffic exists (§ VI-D).
Generally, unscheduled packets could fill in the bandwidth
gap. (iii) A dedicated queue for a token should be used to
leverage rate limiting. Each output port in a commodity switch
supports multiple priority levels (typically eight) [12], [27].
Hence, a dedicated queue for tokens is reasonable.

Finding 3. Token rate-limiters on switches provide cen-
tralized bandwidth allocation control. It ensures that the
bandwidth allocated by tokens exactly matches the bottleneck
bandwidth.

D. Total Volume Control of Token

The total volume control of tokens denotes that receivers
track the number of tokens sent and stop sending tokens when
the number equals the volume needed for a flow. It is coupled
with the token generation manner.

Absence of token total volume control. Without total
volume control, receivers do not stop sending tokens until
all data are received. The rate-based token generation (e.g.,
ExpressPass) is not compatible with the total volume control
because whether tokens arrive at senders is unpredictable after
competing for bandwidth in networks (§ IV-B).

Presence of token total volume control. When tokens are
generated in a data-driven manner, it can be chosen whether
to control the total volume of tokens or not. Homa and NDP
both track the number of tokens needed according to the traffic
left to be scheduled.

Pros and cons discussion. Figure 3(c) compares the perfor-
mance of TOCC (soon be presented in § V) and TOCC (w/o
total volume control). When leveraging total volume control,
the tail latency of TOCC can be greatly improved.

Findings 4. Total volume control of tokens is vital to avoid
the last-RTT token waste which affects the tail latency of flows.

E. Other In-Network Support

Besides the main design points discussed above, different
TCC has specific mechanisms to optimize its performance
(§ II). Homa leverages SRPT (shortest remaining processing
time) scheduling strategies on senders, prioritizing smaller
flows over larger ones. In addition, eight in-network priority
queues are leveraged to assign priorities to data according to
their flows’ sizes. NDP trims the payload of a dropped packet
and uses the header to precisely inform the receiver about the
drop. By limiting the length of packet queues to a small value,
NDP constrains one-way delay and provides deterministic
packet loss under ideal scenarios (e.g., congestion only occurs
at the edge of the network, and control packets do not
drop). Since these optimize on performance are specific and
somewhat far from the core design of TCCs, in this paper,
we do not dig into these design points.

F. Token Congestion Control

ExpressPass adapts the tokens’ sending rate to reduce the
token loss ratio. For TCCs generating tokens based on a
data-driven manner (e.g., Homa and NDP), token congestion
control (CC) is neglected. This section explores when TCCs
can benefit from token CC, even without token loss.

Token incast problem. Since receivers schedule the trans-
mission of tokens in a distributed fashion, a receiver could not
know whether other receivers are allocating bandwidth for the
same sender. When multiple receivers send tokens to the same
sender simultaneously, token incast could occur. It results in
some senders receiving bandwidth allocation which exceeds
their forwarding capacity while other senders lack tokens for
transmission. Hence, unlike the data incast occurring in RCC
protocols which induces a large buffer occupancy, token incast
brings under-utilization.

Data queue can still build up. End-to-end bandwidth
allocation by tokens together with in-network rate-limiters
ensure that the bandwidth used by scheduled packets would
not exceed the network bottleneck. However, there are still
scenarios where data queue can build up.

(i) Tokens could have different RTT (i.e., topology consist-
ing of paths with different base RTTs or encountering token
queuing at in-network points). When these tokens arrive at
different senders simultaneously, they trigger the transmission
of scheduled packets transmission concurrently, which could
result in the collision of scheduled packets [10].

(ii) In addition, tokens may not always be used in time. For
instance, the sender host is busy sending other data/control
packets, or the packet processing of hosts is relatively slow.
Then there is a time shift between bandwidth allocation and
its usage, resulting in the bandwidth allocation becoming stale.
It can also cause the transmission collision.

(iii) When unscheduled packets exist, they consume band-
width without allocation.

Since state-of-the-art TCCs discuss little on token CC, this
paper uses TOCC for illustration (soon be introduced in § V).
TOCC adjusts the sending window of tokens according to
the congestion state in networks. Figure 3(d) validates that
token CC helps to relieve the transmission collision brought
by different RTTs of tokens. By leveraging token CC, the data
queuing time is reduced, especially benefiting small flows.
Hence, their slowdown is significantly reduced.

Figure 7(c) and Figure 7(d) (will be depicted later in
§ VI-B) validate that token congestion control helps reduce the
buffer occupancy brought by unscheduled packets. At first, the
transmission rate of unscheduled packets exceeds the network
bottleneck and occupies the buffer. With token CC, the sending
window of tokens is reduced when the congestion signal
arrives at receivers. Hence, the transmission rate of scheduled
packets is reduced correspondingly.

Finding 5. Token CC is necessary to further reduce the data
queue length and provide high bandwidth utilization.

V. TOCC DESIGN AND IMPLEMENTATION

Through the anatomization of different design choices of
TCCs (§ IV), we find that state-of-the-art approaches do not
fully benefit from the design space of TCC. We propose

Authorized licensed use limited to: Nanjing University. Downloaded on April 20,2025 at 03:14:00 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ANATOMY OF TOKEN-BASED CONGESTION CONTROL 485

Fig. 4. TOCC Architecture.

TOCC based on these findings. It targets to provide robust
performance across different scenarios.

The last row of Table I depicts the design chosen by TOCC.
It is not a trivial composition of the design choices of existing
approaches. Firstly, each design choice has its pros and cons.
We should select the most appropriate and effective one.
Moreover, some should be adjusted carefully to be compatible
with each other (e.g., no unscheduled phase and data-driven
token generation); while some can be incompatible and should
not be used jointly (e.g., rate-based token generation and
total volume control of token). TOCC composes these design
choices into three major components: sender logic, receiver
logic, and switch configuration, as depicted in Figure 4.

A. Sender

Configurable unscheduled phase. The unscheduled phase
of TOCC is configurable. The sender can initialize a portion
of unscheduled packets or wait for the bandwidth allocation
from the receiver. When there is no unscheduled phase,
the sender transmits a Request-to-Send (RTS) to notify the
receiver. We give our guidance on settings, i.e., when the
application is composed of tiny flows (e.g., Memcached), one-
BDP unscheduled phase is necessary; when the application
is mixed with large flows (e.g., Web Search), giving up the
unscheduled phase is a good choice to reduce the buffer
occupancy and queuing delay. Besides, the unscheduled phase
is more critical to a high link bandwidth (e.g., 100 Gbps) with
tiny flows.

Scheduled phase. As for the scheduled phase, the sender
transmits a corresponding full-length scheduled packet when
receiving a token packet. Besides, the sender is responsible
to carry back congestion signals to the receiver to adjust the
transmission rate of token packets.

B. Receiver
Data-driven token generation. The receiver of TOCC gen-

erates token packets in a data-driven manner and follows the
total volume control of tokens to avoid bandwidth waste. Since
there can be no unscheduled packets to trigger token genera-
tion, the token generation mechanism should be adjusted. The
receiver should initialize a portion of token packets (i.e., one
BDP) when receiving RTS packets from the sender. Besides,
a sending window is set to bound the number of inflight token
packets. Instead of requiring flow size as a-priori, TOCC’s
sender checks whether the unsent data is larger than one BDP
when transmitting a data packet and carries the flag in the data
packet header. Only when a data packet requiring additional
tokens is received, a token is transmitted. Particularly, when
applications generate packets in bursts, packets of a flow can
arrive intermittently. TOCC treats these intermittent packets
as new flows.

Configurable congestion control (CC). CC on token
packets is leveraged to reduce the buffer occupancy further.
TOCC is flexible to leverage the CC algorithms of RCCs
by transferring the rate adjustment on data to tokens. Note
that when CC on tokens is leveraged, tokens are generated
according to the adjusted sending window rather than a data-
driven method with a static sending window.

Currently, we integrate the CC algorithm of DCQCN to
TOCC for comparison. Token packets are marked with ECN
according to their queue length. Especially, the marking
threshold of tokens is reduced by the proportion of a full-
length data size vs. a token size. When the sender receives
token packets marked with ECN, the sender carries congestion
signals in data packets instead of using dedicated conges-
tion signals (e.g., CNP). This is because dedicated signals
consume unallocated bandwidth that could induce buffer built-
up (Appendix A). When the congestion signals arrive at the
receiver, the sending window of tokens is reduced according
to the CC algorithms. Furthermore, to reduce the buffer
occupancy brought by unscheduled packets, TOCC also marks
unscheduled packets when their queue length exceeds the ECN
marking threshold. When the congestion signals carried in
unscheduled packets arrive at the receiver, the sending window
of tokens is also adjusted. Note that we do not claim that the
CC algorithm used in DCQCN is the most suitable one for
TOCC. We will integrate CC algorithms of other RCCs in the
future.

Packet loss handling. Packet loss is expected to be rare
since TOCC achieves a low-level buffer occupancy. To han-
dle rare packet loss caused by packet corruption, TOCC’s
receivers maintain Packet Sequence Numbers (PSNs) and
timeout to detect and recover from packet loss. When token
loss is detected, the receiver retransmits the corresponding
number of tokens. Token loss is transparent to TOCC’s sender.
When data loss is detected, the sender is notified by tokens
carrying corresponding PSNs of lost data packets.

C. Switch
In-network rate-limiters. Switches are configured with

rate-limiters to make tokens compete for bandwidth at the
network bottleneck. The value of rate-limiters is calculated
according to the guidance that the bandwidth used by tokens
and data packets equals the link speed. Hence, the rate-limiters
are set to TokenSize/(DataSize + TokenSize). Rather
than dropping token packets when their arriving rate exceeds
the limited rate, TOCC lets tokens queue at the network
bottleneck. It is reasonable since tokens generated in a data-
driven manner do not overwhelm the switch, and the token
queue can be further reduced by token CC.

D. Implementation
We implement TOCC in our NP-based smart NICs,

as shown in Figure 5. It consists of the data and token
transmission components. The transmission of token packets
is adjusted by token CC, and the transmission of scheduled
packets is controlled by the receiving rate of tokens. Token
and data packets are assigned a dedicated queue. The imple-
mentation challenges and details are discussed below.

Authorized licensed use limited to: Nanjing University. Downloaded on April 20,2025 at 03:14:00 UTC from IEEE Xplore. Restrictions apply.

486 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 2, APRIL 2025

Fig. 5. TOCC implementation.

Limitations on programmable NICs’ sending/receiving
ability can cause throughput downgrade. Bandwidth under-
utilization is observed when experiments are conducted on
TCC, especially when running HPC-like workloads consisting
of tiny messages. For that programmable NIC is inadequate to
provide a line-rate bandwidth when handling a large number
of token packets whose size is relatively small. In our testbed
environment, the minimum size of a RoCE frame is 94 bytes.
A RoCE frame is made up of: 14B (Eth) + 20B (IP) + 8B
(UDP) + 12B (BTH) + 4B (ICRC) + 4B (VLAN) + 24B
(inter-frame interval and FCS) = 86B. Besides, 8B (payload)
is added for subsequent features. A tiny packet consumes the
same pps as a full-length packet while consuming a smaller
bandwidth. In addition, TCC’s end-host is responsible to
transmit and receive token packets (a minimum RoCE frame),
which also consumes its sending/receiving ability. To decrease
the pressure put on NICs’ pps, we reduce the bandwidth
consumed by tokens by inducing allocation ratio K, i.e., the
total data bytes that can be transmitted when a sender receives
a token. Generally, we set K to larger than 2 KB.

When only one TOKEN bucket is available. In a typical
programmable NIC, a flow has only one TOKEN bucket to
schedule its transmission. For that the term TOKEN here
differs from the ‘token packet’ in TCC. To avoid ambiguity,
capital letters are used for the term TOKEN.

In TCC, token and data packets have different priorities.
Therefore, they cannot be scheduled by one TOKEN bucket
as a whole. To solve this problem, we use a timer to schedule
the transmission of token packets instead. The defect of this
alternative is that the precision of the timer is limited.

Handling tokens not used in time. When the tokens
received by senders are not used in time, the bandwidth
allocation is stale (§ IV-F). The data packets transmitted by
using stale bandwidth allocation could cause transmission
collision with other data packets, which may lead to buffer
built-up. Therefore, it should be careful to use stale tokens.
Typically, a relatively large timeout value (e.g., 200µs) is set
to limit the maximum duration a token can stay on the sender.
In addition, a real-time BDP value is calculated by using the
transmission rate of token packets. Tokens that trigger data
packets exceeding one BDP are discarded.

Takeaway 1. Rate-limiter configuration. To improve the
network goodput and solve the problem brought by hard-
ware limitations, one token allocates bandwidth for K bytes.

Typically, K ranges from 2 KB to 8 KB. It is acceptable to
compromise precision on bandwidth allocation to an extent.

Takeaway 2. Requirements for our next version of pro-
grammable NICs. To improve the performance of TOCC,
it is also important to upgrade NICs’ capabilities. Rather than
using a timer to imitate the TOKEN bucket, we consider
implementing two buckets for scheduling in our next NIC
versions.

VI. EVALUATION

In this section, we first compare TOCC with state-of-the-
art TCCs such as Homa, NDP, ExpressPass and EP+Aeolus
to validate that TOCC is robust across different scenarios
(§ VI-A). Then, TOCC is chosen as a representative of TCC to
compare with RCCs. We provide an analysis of TOCC’s key
advantages over RCCs (§ VI-B). Then, TOCC is compared
with RCCs such as DCQCN, TIMELY, and HPCC through
large-scale simulations (§ VI-C) and testbed evaluations
(§ VI-D). The authors’ contributed code and recommended
parameter settings are used [31], [32], [33], [34], [35]. There
are two versions of TOCC according to whether configured
with unscheduled packets or not. TOCC (w/o unsch) denotes
TOCC configuring no unscheduled stage. In our description,
We may use TOCC to stand for two versions of TOCC.

The key results are summarized here.
• Key advantages of TOCC: it converges quickly without

relying on CC algorithms; it is relatively insensitive to
parameter settings; it achieves better performance when
leveraging the same CC algorithms as RCCs.

• TOCC is flexible for higher bandwidth links, and
TOCC $w/o unsch) is robust for incast scenarios, ben-
efiting from its freedom on unscheduled stages.

• TOCC benefits small flows by achieving a small queue
length as well as benefiting large flows by obtaining
stable high throughput.

• TOCC achieves a relatively small deviation of FCTs.
Workloads. Poisson arrival flows with a load of 0.8 are

generated (§ III-B). Performance under load 0.2 to 0.7 are left
in Appendix B. In incast scenarios, we generate non-incast
flows following a Poisson arrival process with a load of 0.8 and
periodic incast flows with a load of 0.2 (the average load of the
incast destination host). The size of incast flows is 30 MTU-40
MTU by default.

Topologies. The default one is a 2-level leaf-spine network
that contains 4 core switches, 10 ToRs, and 160 hosts (similar
to that in [12]). Each ToR connects to hosts/cores via 100 Gbps
links, i.e., the oversubscription ratio of the network is 4:1.
The base RTT and Bandwidth-Delay-Product (BDP) are 5.3µs
and 65.8 KB, respectively. Links are decreased to 10 Gbps
to dig into the performance variation among different band-
width links. The links connecting ToR and core switches are
increased to 400 Gbps/40 Gbps to construct non-blocking
topologies. In incast scenarios, non-blocking topologies are
used to focus on the congestion caused by incast flows.

A. Comparison Among TCCs

TOCC is compared with state-of-the-art TCCs under Pois-
son arrival and incast scenarios, as shown in Figure 6.

Authorized licensed use limited to: Nanjing University. Downloaded on April 20,2025 at 03:14:00 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ANATOMY OF TOKEN-BASED CONGESTION CONTROL 487

Fig. 6. Comparing with TCCs under 100 Gbps. The triangles denote the max buffer occupancy. The deep/light color represents the average/99th-tail value
for each bar.

For that § 2 already discussed their FCT performance of
them, in this section, we mainly use slowdown metric for
illustration.

Realistic workloads composed of Poisson flows. We
evaluated TCCs in different workloads with Possion arrival
flows, as shown in Figure 6(a)-6(c). Homa benefits from its
SRTF scheduling policy. Hence it achieves good performance
for Memcached which is mostly composed of tiny flows,
as demonstrated in Figure 6(a). However, the benefits of
Homa’s priority scheduling diminish with an oversubscribed
topology. Homa faces packet loss and timeout retransmission
under workloads composed of larger flows. Hence, its perfor-
mance downgrades under Cache Follower.

For NDP, it actively drops packets when the queue length
exceeds a small threshold. The header of packets is sent to
the receiver to notify the packet loss. Then PULL packets are
sent at line rate for retransmission. It handles congestion that
occurs at the last hop well since the transmission rate of PULL
packets exactly matches the line rate of the last hop. However,
NDP falls short in the presence of bottlenecks in the network
core (as opposed to congestion happening at the edge), e.g.,
due to oversubscription of the topology or poor load balancing.
Since receivers do not usually have visibility on this, this may
result in higher-than-required PULL generation and result in
more severe network congestion. Under Memcached, flows
benefit from a small queuing delay. However, under other
workloads, the massive drop of data packets prolongs the slow-
down of flows to a large extent. To present the performance of
different algorithms more clearly, we put the results of NDP
in Appendix B.

For ExpressPass, it schedules every data packet to avoid
network congestion. Therefore, it achieves a relatively small
buffer among different scenarios, at the cost of prolonging the
slowdown of flows, especially under Memcached.

TOCC achieves a relatively small buffer occupancy, reduc-
ing the average and tail latency across different workloads.
To improve the performance of small flows, utilizing the first
RTT and achieving low buffer occupancy are both important.
Under Memcached, when TOCC is initialized with unsched-
uled packets, TOCC benefits from utilizing the first RTT.
Under Cache Follower and Web Search, TOCC and Homa
both transmit the same portion of unscheduled packets, while
TOCC reduces the buffer occupancy by 3.2×. It indicates that
TOCC’s design choices of scheduled phase (e.g., rate-limiters
and token congestion control) are efficient. TOCC (w/o unsch)
further reduces the buffer occupancy, thus achieving a smaller
slowdown compared with TOCC. It means that under stressful
workloads where traffic is mixed with large flows, TOCC (w/o
unsch)’s strategy that giving up the first-RTT to get a lower
queue length works well.

Incast scenarios. Figure 6(d) demonstrates the performance
of different TCCs when Web Server flows are mixed with
incast flows. TOCC utilizes the design space of TCC. It lever-
ages the freedom of TCC to configure unscheduled stage.
Under bursty scenarios, TOCC can choose to schedule every
data packet. In scenarios where non-incast flows are mixed
with incast flows, as shown in Figure 6(d), TOCC (w/o unsch)
obtains a low buffer occupancy. Benefiting from data-driven
token generation, TOCC reduces the average and tail FCTs
compared with ExpressPass and EP+Aeolus.

B. Key Advantage Over RCCs

When TOCC leverages the same CC algorithm as DCQCN,
TOCC can achieve better performance. This is rooted
in the token-based bandwidth allocation manner of the
TCC approach.

TOCC converges quickly. TCC leverages token packets
to allocate bandwidth for each scheduled packet precisely.
Therefore, the bandwidth used by scheduled packets can utilize
just the right amount of the bottleneck bandwidth even before
tokens converge to a stable rate. To validate the benefit brought
by token, a simulation is conducted under all-to-all scenarios,
where eight flows pass through one 100 Gbps bottleneck
link simultaneously. Figures 7(a) and 7(c) depict the results
of DCQCN and TOCC (w/o token CC), respectively. For
DCQCN, it endures a long process before the CC algorithm
converges. Both the sending rate and buffer occupancy are
unstable. The sending rate varies between 5 Gbps to 25 Gbps,
and the convergence target is 12.5 Gbps. The maximum buffer
occupancy can reach up to 14.3 MB. And the throughput
is also unstable because of the jittering sending rate. For
TOCC, the sending rate on each host is stable, benefiting
from the token bandwidth allocation mechanism. Therefore,
the network throughput is high and stable. Meanwhile, the
buffer occupancy is smaller than 6.5 MB and unscheduled
packets take up the buffer. Because no CC algorithm is used,
the queue length does not decrease until flows finish.

Parameters in DCQCN are hard to tune, while TOCC is
relatively insensitive to the parameters. CC parameter
tuning is always complicated and time-consuming [36], [37].
In DCQCN, there are dozens of parameters. Although there is
a set of recommended parameter settings [5], [35], they do not
work well across variable conditions. It consumes much time
and labor work to validate an appropriate set of parameter
settings. Figure 7(a) and 7(b) compare the performance of
DCQCN under two sets of parameter settings.1 When the

1The first one has a more aggressively addictive rate-increase value with
a larger time period between rate-increase events, while the second one is
contrary. In the first set, rpg_time_reset = 900 µs, rpg_ai_rate = 50 Mb/s,
rpg_hai_rate = 100 Mb/s. In the second set, rpg_time_reset = 300 µs,
rpg_ai_rate = 5 Mb/s, rpg_hai_rate = 50 Mb/s.

Authorized licensed use limited to: Nanjing University. Downloaded on April 20,2025 at 03:14:00 UTC from IEEE Xplore. Restrictions apply.

488 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 2, APRIL 2025

Fig. 7. Performance of DCQCN and TOCC under all-to-all traffic. Two set of parameters are used, the first one is recommended parameters in a customized
storage [6], the second one is recommended parameters provided by Mellanox [35].

Fig. 8. Comparing with RCCs under incast-mix.

second parameter set is used, the converging process is faster
than the first one, i.e., the sending rate converges before 40 ms.
Bandwidth is more utilized, i.e., throughput downgrade only
happens at first. However, its buffer occupancy has a larger
variation, i.e., from 5 MB to 15 MB.

TOCC is relatively insensitive to different parameters,
which is preferred to industries. Figure 7(d) depicts the perfor-
mance of TOCC, which leverages the same congestion control
algorithms used in DCQCN. The performance difference of
TOCC is negligible between the two sets of parameters. Thus
this paper provides the second one in Appendix B.

TOCC has fewer requirements on CC algorithms com-
pared to RCCs. More accurate congestion signals bring better
network performance. Nevertheless, it has been found that
TOCC does not require accurate congestion signals or fine-
tuned CC algorithms on tokens to achieve fast convergence
and good stability. Firstly, scheduled packets are transmitted
according to the bandwidth allocation even before the CC
algorithm converges. Secondly, tokens instead of data are
queuing when the network bottleneck exists. Token queuing
costs less than data queuing. For that, the token queue is much
smaller than the data queue and will not be directly transferred
to the data queue. Figure 7(a) and Figure 7(d) show that
TCC can already achieve better performance than DCQCN
by leveraging the same CC algorithm as DCQCN.

C. Performance Comparison With RCCs
TOCC is compared with RCCs under Poisson arrival and

incast scenarios. Flows are classified into tiny (<10 KB),
small (10 KB-100 KB), medium (100 KB-1 MB), and large
(>1 MB).

Incast scenarios. Figure 8 evaluates the performance of
TOCC and RCCs under incast scenarios. Results show that
TOCC tends to achieve better performance than RCCs. This
is because TOCC utilizes the design space of TCC and
benefits from the configurable design of the unscheduled
phase. In incast scenarios, unscheduled packets of incast flows
contribute to network congestion and dominate the buffer
occupancy. Fortunately, TOCC can choose to schedule every
data packet to avoid incast occurring. Hence, TOCC (w/o
unsch) obtains low average and tail latency of Poisson flows.
In addition, even with unscheduled phase, TOCC can reduce
FCTs compared to RCC approaches, for that TOCC benefits
from the stable bandwidth allocation provided by tokens.

Among RCCs, DCQCN can achieve better performance
than TIMELY and HPCC. There are two main factors to the
performance downgrade of non-incast flows. The first factor is
the bursty incast flows. With RCCs, non-incast flows sharing
the same output queue with incast flows endure a long queuing
delay. Further triggered PFCs can spread the incast congestion
to the whole network. The second factor is the reaction of

Authorized licensed use limited to: Nanjing University. Downloaded on April 20,2025 at 03:14:00 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ANATOMY OF TOKEN-BASED CONGESTION CONTROL 489

Fig. 9. Comparing with RCCs under Poisson arrival scenarios (100 Gbps).

the CC. After congestion signals arrive at senders, the trans-
mission rate of non-incast flows is reduced. Already injected
unscheduled packets of incast flows can not be controlled by
the transmission adjustment, only making the transmission rate
of scheduled packets be reduced. Since HPCC and TIMELY
are more sensitive to network congestion, they are more likely
to overreact to bursty congestion, i.e., the transmission rate of
non-incast flows is reduced aggressively. This especially hurts
large flows. As shown in Figure 8(a) and 8(b), with HPCC and
TIMELY, flows larger than 100 KB are prolonged to a larger
extent than small flows compared to DCQCN and TOCC.
Figure 8(c) and 8(f) demonstrate the performance of non-incast
flows and incast flows when increasing the size of incast flows
to 90-120 MTU. The non-incast flows of TOCC achieve good
performance. Meanwhile, the performance of incast flows
is not compromised. The performance of TIMELY down-
grades, for that TIMELY suffers from the infinite fixed points
problem.

When link bandwidth varies. With the growth of link
bandwidth, the control of the unscheduled phase becomes
more necessary. Under 100 Gbps link bandwidth, flow with
the same size could result in transient congestion, making
the network become more bursty. Hence, TOCC (w/o unsch)
improves the performance of non-incast flows more signifi-
cantly, as shown in Figure 8(d) and 8(e).

Realistic workloads composed of Poisson flows.
Figure 9(a) depicts the performance of Memcached. As dis-
cussed in § IV-A, the transmission of unscheduled packets
plays an important part in reducing FCTs of small flows.
Correspondingly, CC is a less critical factor since it can only
control scheduled packets. Therefore, RCCs and TOCC all
achieve good performance. Among them, the performance of
HPCC is a little downgraded for that it leverages the INT
header which brings network overhead and a larger queue
length.

Figure 9(b) -9(c) demonstrate the performance under two
other workloads. HPCC benefits from its precise in-network
congestion signals brought by INT. Therefore, it achieves
a small buffer occupancy and reduces the FCTs of small
and medium flows. HPCC faces the overreaction to tran-
sient congested traffic. Hence, its tail latency is prolonged.
TOCC benefits from its token-based bandwidth allocation.
It obtains fast convergence and a relatively small buffer occu-
pancy. Besides, TOCC leverages token CC to further reduce
the buffer occupancy. Hence TOCC reduces the FCTs of small
and medium flows compared to other RCCs except for HPCC.
Besides, TOCC achieves a lower tail latency for large flows,
indicating a stable high throughput.

D. Testbed Results
Topology. A 2-tier clos network containing one core switch,

two ToRs, and 32 hosts (i.e., 16 hosts per rack) is used. Each
host is connected to a ToR via a 25 Gbps link. Each ToR is
connected to the core switch via a 200 Gbps link. Each server
is equipped with a 25 Gbps NP-based smart NIC.

Workloads. Perftest [38], a standard network benchmarking
tool for OpenFabrics Enterprise Distribution (OFED) on the
RDMA, is used to generate distributed storage-like traffic.
ib_write_bw and ib_write_lat are exploited to generate back-
ground bandwidth-sensitive and latency-sensitive flows [39].
The size of flows is either 8K or 1M. In all-to-all and incast
scenarios, each server connects to other servers via 8 and 32
Queue-Pairs (QP), respectively.

All-to-All scenarios (load 80%). Figure 10(a) depicts the
throughput of bandwidth-sensitive background flows and the
FCTs of latency-sensitive flows under 80% load. Performance
under different size background flows shows the same trends.
TOCC achieves a 12.1% higher average throughput than
DCQCN, benefiting from the precise bandwidth allocation
to ensure a stable network throughput. TOCC reduces the
average and tail latency of latency-sensitive flows by 52.4%
and 7.8× compared with DCQCN, respectively. In TOCC,
the bandwidth used by background flows is relatively stable.
Therefore the latency-sensitive flows can pass through the
network quickly. Figure 10(e) demonstrates that TOCC’s FCTs
are similar, with a relatively small deviation between FCTs.
This property is suitable for coflow applications.

All-to-All scenarios (load 100%). Figure 10(b) shows
the performance under highly stressful workloads, i.e., the
transmission rate of the bandwidth-sensitive load is not lim-
ited on end-hosts. Bandwidth-sensitive flows can utilize 88%
bandwidth, while DCQCN only utilizes 63%. It is because
DCQCN’s large buffer occupancy triggers PFC frames. HOL
blocking brought by PFC influences its network through-
put. TOCC’s average FCTs on latency-sensitive flows are
larger compared with DCQCN. However, it is somehow
unfair because DCQCN’s background flows are significantly
under-utilized, which can benefit latency-sensitive flows. Nev-
ertheless, TOCC reduces the tail latency.

All-to-Many scenarios. Two kinds of all-to-many traffic
are conducted, i.e., random intra-rack servers or inter-rack
servers. Similarly, the network throughput is highly utilized
by TOCC. The network is less congested than in all-to-all
scenarios since the number of active QPs is decreased. Besides,
flows spend less time waiting for scheduling at sender end-
hosts. Hence, the FCT for flows is reduced compared to that in
all-to-all (load 100%) scenarios. Nevertheless, TOCC achieves

Authorized licensed use limited to: Nanjing University. Downloaded on April 20,2025 at 03:14:00 UTC from IEEE Xplore. Restrictions apply.

490 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 2, APRIL 2025

Fig. 10. Performance of DCQCN and TOCC in testbed. The triangles denote the bandwidth utilization. The deep/light color represents the average/99.9th-tail
value for each bar, respectively.

better performance on average FCTs, and the tail latency is
significantly reduced compared with DCQCN.

Pure incast scenarios. Figure 10(f) demonstrates the results
under pure 31:1 incast. The throughput of TOCC is stable
and fully utilized across different background flow size. The
under-utilization of DCQCN is not caused by PFC, since for
pure incast, PFC does not influence the throughput. Instead,
DCQCN waits for CC algorithms to converge. In addition,
TOCC’s rate-limiter determines the maximum utilization for
data. In one-sided traffic scenarios like pure incast, the band-
width reserved by tokens could be wasted (§ IV-C).

VII. DISCUSSIONS

Related works. FlexPass [11] tries to solve the co-existence
of TCC and RCC traffic. On-Ramp [40] is a patch to current
RCCs. It divides the network into transient and equilibrium
states. It handles the transient state of the network by lever-
aging accurate measurements of one-way delay, leaving the
equilibrium state for RCCs. dcPIM [41] tries to provide a
full match between senders and receivers, guaranteeing near-
optimal utilization with a constant number of rounds. dcPIM
assumes that the flow size is known in advance. And it wastes
several RTTs to match before transmission hence it hurts the
performance of middle-sized flows (since in dcPIM, small
flows can be transmitted without waiting for matching). Apart
from CC protocols, per-hop flow control protocols [22], [27]
can react to congestion in a quicker way. Hence, it reduces
the buffer occupancy significantly and ensures zero packet
loss. However, flow control protocols tame the transmission
of flows in a per-queue manner, which might involve HOL-
blocking and congestion spreading.

Cooperating with priority queues. TCC can leverage
priority queues to support SLO (service level objective). While
Homa assigns priorities to data packets directly, there are
other approaches [42] that choose to assign priorities to
tokens instead, where data packets use one queue, and tokens
use the remaining queues according to the priority of the
corresponding data. The main benefit brought by assigning
priorities to tokens is that it can avoid blocking data packets
in a low-priority queue, which could result in packet loss.
Besides, in the presence of the rate-limiters on tokens, it avoids
flows with a high priority waiting for tokens for a long time.

Transmission coordination between unscheduled and
scheduled packets. One may wonder whether the rate-
limiter of tokens should be reconfigured to different values
when unscheduled packets exist in the network. However,
reconfiguring the rate-limiter in running time is not trivial.
Fortunately, congestion control on tokens can be aware of
the existing congestion in networks (§ V-B). Besides, there
is work [43] already noticing the over-injection of scheduled
packets with a fixed rate-limiter setting. It coordinates the
transmission between unscheduled and scheduled packets via
back-pressuring the network when unscheduled packets carry-
ing congestion signals are received.

VIII. CONCLUSION

This paper explores the design space of token-based proac-
tive congestion control (TCC) protocols by systematically
analyzing the design choices of state-of-the-art approaches.
Then we present TOCC, a token-oriented CC utilizing
the design space of TCC. It provides configurable design
components (e.g., unscheduled packets and CC algorithms)
and guidance to configure them. Evaluations show that
TOCC converges quickly and provides a stable high through-
put. We envision that TOCC could motivate further exploration
of TCC.

APPENDIX

A. Detailed Design

When integrating DCQCN congestion control algorithm to
TOCC, we first use dedicated CNP packets to carry back
ECN-marking signal of token queue. Figure 12 shows the
buffer occupancy at the network bottleneck. Instantaneous
buffer burst occurs several times. Owning to the fact that
the bandwidth used by CNP packets is unexpected and un-
allocated. The perfect allocation of token/data packets does
not aware of bandwidth used by CNP, which can result in the
total bandwidth usage exceeds the network bottleneck. To this
end, TOCC leverages data packets to carry back congestion
status of token queue. An alternative is that configuring the
rate-limiter to a smaller value, allowing the bandwidth con-
sumed by token and data packets slightly beneath the network
bottleneck.

Authorized licensed use limited to: Nanjing University. Downloaded on April 20,2025 at 03:14:00 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ANATOMY OF TOKEN-BASED CONGESTION CONTROL 491

Fig. 11. Performance of TOCC and RCCs across different load.

Fig. 12. Detailed design choice: leveraging CNP to carry congestion signals.

Fig. 13. TOCC with different para. set.

B. Supplemental Evaluation

Different parameters for congestion control. Figure 13(b)
shows the performance of TOCC when using the second
parameter settings. The performance is relatively the same
as TOCC using the first parameter settings, as shown in
Figure 7(d).

Parameter selection. When using the recommended ECN
marking threshold (i.e., Kmin = 22KB, Kmax = 85KB,
Pmax = 0.2 for 100G links), TOCC achieves high throughput
and relatively small buffer occupancy (§ VI). Figure 13(a)
shows the result of TOCC when ECN marking threshold
is set to half of the recommended value. A period of time
(i.e., hundreds of microseconds) of an empty token queue
results in an empty data queue. Hence, the network throughput
downgrades for a short period of time. Given that token
queuing has a relatively small impact on network performance

Fig. 14. Comparing with TCCs under 100 Gbps.

(§ IV-F), we recommend that the ECN marking threshold of
token queue is set to a conservative value.

NDP performance under Poisson arrival flows. Figure 14
shows the performance of NDP under Cache Follower and
Web Search. As discussed in § VI-A, NDP suffers from a large
drop ratio by setting an aggressive threshold to cut packets’
payload under oversubscribed networks. Hence, the FCT of
flows is severely prolonged.

When network loads vary. We evaluate the performance of
different protocols under a wide range of network loads from
20% to 80%, as shown in Figure 11. Figure 11(a) shows the
result of the average FCT of Web Server workload. As the load
increases, the gap of average FCTs between different protocols
becomes larger. And TOCC (w/o unsch) achieves a stable
good performance across the different load. It is worth noticing
that when load increases, TOCC (w/o unsch) performs better
than TOCC. This is because under a high load, giving up the
unscheduled phase provides a lower queue length as well as
a lower queuing delay. Figure 11(b) shows the result of tail
latency. At a light load (e.g., 20%), the tail latency of HPCC
and TIMELY is prolonged compared to other approaches. And
the gap shrinks as the network load increases. It indicates
that the aggressive rate adjustment is sensitive to micro-bursts,
hurting the throughput especially under light load scenarios.

Different from Web Server workloads, for Cache Follower
and Web Search workloads, the performance of TOCC and
TOCC (w/o unsch) are much more closer. This is because the
average size of Cache Follower and Web Search are larger,
composing less fraction of unscheduled packets. HPCC pro-
longs the average FCT and tail latency, for that it is sensitive
to transient congestion which could lead to the throughput
downgrade.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments.

Authorized licensed use limited to: Nanjing University. Downloaded on April 20,2025 at 03:14:00 UTC from IEEE Xplore. Restrictions apply.

492 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 2, APRIL 2025

REFERENCES

[1] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. ACM Conf. SIGCOMM,
2015, pp. 123–137.

[2] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. ACM IMC, 2010, pp. 267–280.

[3] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements & analysis,” in Proc. ACM
IMC, 2009, pp. 202–208.

[4] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proc. ACM
SIGMETRICS, 2012, pp. 53–64.

[5] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
in Proc. ACM SIGCOMM, 2015, pp. 1–14.

[6] Y. Li et al., “HPCC: High precision congestion control,” in Proc. ACM
Special Interest Group Data Commun., 2019, pp. 44–58.

[7] V. Addanki, O. Michel, and S. Schmid, “PowerTCP: Pushing the perfor-
mance limits of datacenter networks,” in Proc. NSDI, 2022, pp. 1–21.

[8] R. Mittal et al., “TIMELY: RTT-based congestion control for the
datacenter,” in Proc. ACM SIGCOMM, 2015, pp. 1–14.

[9] G. Kumar et al., “Swift: Delay is simple and effective for congestion
control in the datacenter,” in Proc. ACM SIGCOMM, 2020, pp. 514–528.

[10] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded con-
gestion control for datacenters,” in Proc. ACM SIGCOMM, 2017,
pp. 239–252.

[11] H. Lim, J. Kim, I. Cho, K. Jang, W. Bai, and D. Han, “FlexPass: A case
for flexible credit-based transport for datacenter networks,” in Proc. 18th
Eur. Conf. Comput. Syst., May 2023, pp. 606–622.

[12] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-
driven low-latency transport protocol using network priorities,” in Proc.
ACM SIGCOMM, 2018, pp. 221–235.

[13] J. Ousterhout, “A Linux kernel implementation of the homa transport
protocol,” in Proc. USENIX Annu. Tech. Conf., 2021, pp. 1–16.

[14] M. Handley et al., “Re-architecting datacenter networks and stacks for
low latency and high performance,” in Proc. ACM SIGCOMM, 2017,
pp. 29–42.

[15] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and
S. Shenker, “pHost: Distributed near-optimal datacenter transport over
commodity network fabric,” in Proc. ACM CoNEXT, 2015, pp. 1–12.

[16] S. Hu et al., “Aeolus: A building block for proactive transport in
datacenters,” in Proc. ACM SIGCOMM, 2020, pp. 422–434.

[17] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM
SIGCOMM, 2011, pp. 63–74.

[18] Congestion notification, IEEE Standard 802.11Qau, 2010.
[19] H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang, “Tuning ECN

for data center networks,” in Proc. ACM CoNEXT, 2012, pp. 25–36.
[20] Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye, “ECN or delay: Lessons

learnt from analysis of DCQCN and TIMELY,” in Proc. 12th Int. Conf.
Emerg. Netw. Exp. Technol., Dec. 2016, pp. 313–327.

[21] S. Arslan, Y. Li, G. Kumar, and N. Dukkipati, “Bolt: Sub-RTT conges-
tion control for ultra-low latency,” in Proc. NSDI, 2023, pp. 1–19.

[22] P. Goyal, P. Shah, K. Zhao, G. Nikolaidis, M. Alizadeh, and
T. E. Anderson, “Backpressure flow control,” in Proc. NSDI, 2022,
pp. 1–3.

[23] D. Gibson et al., “Aquila: A unified, low-latency fabric for datacenter
networks,” in Proc. NSDI, 2022, pp. 1–19.

[24] A. Kalia, M. Kaminsky, and D. Andersen, “Datacenter RPCs can be
general and fast,” in Proc. NSDI, 2019, pp. 1–17.

[25] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail: Reducing
the flow completion time tail in datacenter networks,” in Proc. ACM
SIGCOMM, 2012, pp. 139–150.

[26] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
in Proc. ACM SIGCOMM, vol. 43, 2013, pp. 435–446.

[27] IEEE. (2011). 802.11Qbb. Priority Based Flow Control. [Online]. Avail-
able: https://1.ieee802.org/dcb/802-1qbb/

[28] Cisco Nexus 9000 Series NX-OS Security Configuration Guide, Release
7.X, Cisco, San Jose, CA, USA, 2021.

[29] Broadcom. (2018). BCM53154. [Online]. Available: https://docs.
broadcom.com/doc/53154-PB100

[30] Juniper. (2021). Configuring Rate Limits on Enhanced Queuing
DPCs. [Online]. Available: https://www.juniper.net/documentation/us/
en/software/junos/cos/topics/concept/cos-configuring-rate-limits-on-
enhanced-queuing-dpcs.html

[31] Alibaba. (2019). HPCC Simulator. [Online]. Available: https://github.
com/alibaba-edu/High-Precision-Congestion-Control

[32] KAIST. (2017). Expresspass Simulator. [Online]. Available: https://
github.com/kaist-ina/ns2-xpass

[33] Stanford. (2018). Homa Simulator. [Online]. Available: https://github.
com/PlatformLab/HomaSimulation

[34] U. C. London. (2017). NDP Simulator. [Online]. Available: https://
github.com/nets-cs-pub-ro/NDP/wiki/NDP-Simulator

[35] Mellanox. (2020). DCQCN Parameters. [Online]. Available: https://
community.mellanox.com/s/article/dcqcn-parameters

[36] S. Yan, X. Wang, X. Zheng, Y. Xia, D. Liu, and W. Deng, “ACC:
Automatic ECN tuning for high-speed datacenter networks,” in Proc.
SIGCOMM, 2021, pp. 384–397.

[37] V. Arun, M. T. Arashloo, A. Saeed, M. Alizadeh, and H. Balakrish-
nan, “Toward formally verifying congestion control behavior,” in Proc.
SIGCOMM, 2021, pp. 1–16.

[38] Perftest. (2021). Open Fabrics Enterprise Distribution (OFED) Per-
formance Tests README. [Online]. Available: https://github.com/linux-
rdma/perftest

[39] Mellanox. (2019). Perftest Package. [Online]. Available: https://
community.mellanox.com/s/article/perftest-package

[40] S. Liu, A. Ghalayini, M. Alizadeh, B. Prabhakar, M. Rosenblum,
and A. Sivaraman, “Breaking the transience-equilibrium nexus: A new
approach to datacenter packet transport,” in Proc. NSDI, 2021, pp. 1–18.

[41] Q. Cai, M. T. Arashloo, and R. Agarwal, “dcPIM: Near-optimal
proactive datacenter transport,” in Proc. ACM SIGCOMM Conf., 2022,
pp. 53–65.

[42] K. Liu et al., “Exploring token-oriented in-network prioritization in
datacenter networks,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 5,
pp. 1223–1238, May 2020.

[43] K. Liu et al., “PayDebt: Reduce buffer occupancy under bursty traffic
on large clusters,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 12,
pp. 4707–4722, Dec. 2022.

Kexin Liu received the B.S. degree from the
Department of Software Engineering, Sun Yat-sen
University, China, in 2017, and the Ph.D. degree
in computer science and technology from Nan-
jing University, China, in 2023. She is currently
a Senior Research Engineer with Huawei. Her
research interests include data center networks, net-
work architecture, and networks for AI.

Chang Liu received the B.S. degree from the School
of Computer Science and Engineering, Northeastern
University, China, in 2021. She is currently pursuing
the master’s degree with the Department of Com-
puter Science and Technology, Nanjing University,
China. Her research interests include programmable
switches and data center networks.

Qingyue Wang received the B.S. degree from the
Department of Computer Science and Technology,
Wuhan University, China, in 2019, and the M.S.
degree from the Department of Computer Science
and Technology, Nanjing University, China, in 2022.
Her research interests include data center networks.

Authorized licensed use limited to: Nanjing University. Downloaded on April 20,2025 at 03:14:00 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ANATOMY OF TOKEN-BASED CONGESTION CONTROL 493

Zhiqiang Li is currently a Senior Engineer with
China Mobile Research Institute and the Techni-
cal Manager of the Future Network Innovation
Laboratory. His research interests include the tech-
nology of computing, network convergence, and
next-generation IP networks.

Lu Lu (Member, IEEE) is currently the Deputy
Director of the Department of Basic Network Tech-
nology, China Mobile Research Institute (CMRI),
the Leader of the Core Network Group of
CCSA TC5, and the Vice Chair of ITU-T SG13.
Her research interests include 5G/6G network
architecture.

Xiaoliang Wang (Member, IEEE) is currently an
Assistant Professor with the Department of Com-
puter Science and Technology, Nanjing University,
China, where he is currently an Associate Professor.
He has published more than 30 technical papers
at premium international journals and conferences,
including IEEE TRANSACTIONS ON INFORMATION
THEORY, IEEE TRANSACTIONS ON COMMUNI-
CATIONS, IEEE INFOCOM, ACM SIGCOMM,
USENIX, NSDI, FAST, and OSDI. His research
interests include networking systems and mobile
computing.

Fu Xiao (Senior Member, IEEE) received the Ph.D.
degree in computer science and technology from
Nanjing University of Science and Technology, Nan-
jing, China, in 2007. He is currently a Professor
and the Ph.D. Supervisor with the School of Com-
puter Science, Nanjing University of Posts and
Telecommunications, Nanjing. His research papers
have been published in many prestigious conferences
and journals, such as IEEE INFOCOM, IEEE ICC,
IEEE IPCCC, IEEE/ACM ToN, IEEE JOURNAL ON
SELECTED AREAS IN COMMUNICATIONS, IEEE

TRANSACTIONS ON MOBILE COMPUTING, ACM TECS, and IEEE TRANS-
ACTIONS ON VEHICULAR TECHNOLOGY. His research interests include the
Internet of Things and mobile computing. He is a member of the IEEE
Computer Society and the Association for Computing Machinery.

Ying Zhang (Senior Member, IEEE) is cur-
rently the Software Engineering Manager with
Meta. She works on large-scale network manage-
ment problems. She has more than 30 granted
U.S./international patents and 50 peer-reviewed pub-
lications with about 1500 citations. Her research
interests include software-defined networks, network
function virtualization, network monitoring, Internet
routing, and network security. She was named by
Swedish Media as the Mobile Network 10 Brightest
Researcher. She was awarded as the Rising Star in

the networking and communications area.

Wanchun Dou received the Ph.D. degree in
mechanical and electronic engineering from Nan-
jing University of Science and Technology, China,
in 2001. From April 2005 to June 2005 and from
November 2008 to February 2009, he visited the
Department of Computer Science and Engineering,
The Hong Kong University of Science and Tech-
nology, Hong Kong, as a Visiting Scholar. He is
currently a Full Professor with the State Key Lab-
oratory for Novel Software Technology, Nanjing
University. Up to now, he has chaired three National

Natural Science Foundation of China projects and published more than
60 research papers in international journals and international conferences. His
research interests include workflow, cloud computing, and service computing.

Guihai Chen (Fellow, IEEE) received the B.S.
degree in computer software from Nanjing Uni-
versity in 1984, the M.E. degree in computer
applications from Southeast University in 1987, and
the Ph.D. degree in computer science from The
University of Hong Kong in 1997. He had been
invited as a Visiting Professor with the Kyushu
Institute of Technology, Japan; The University of
Queensland, Australia; and Wayne State University,
USA. He is currently a Distinguished Professor with
Nanjing University. He has published more than

350 peer-reviewed papers, and more than 200 of them are in well-archived
international journals such as IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS ON COMPUTERS, IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, ACM/IEEE
TON, and ACM TOSN, and also in well-known conference proceedings, such
as HPCA, MOBIHOC, INFOCOM, ICNP, ICDCS, CoNext, and AAAI. His
research interests include parallel computing, wireless networks, data centers,
peer-to-peer computing, high-performance computer architecture, and data
engineering. He has won nine paper awards, including the ICNP 2015 Best
Paper Award and the DASFAA 2017 Best Paper Award.

Chen Tian (Senior Member, IEEE) received the
B.S., M.S., and Ph.D. degrees from the Depart-
ment of Electronics and Information Engineering,
Huazhong University of Science and Technology,
China, in 2000, 2003, and 2008, respectively. He is
currently a Professor with the State Key Laboratory
for Novel Software Technology, Nanjing University,
China. Previously, he was an Associate Professor
with the School of Electronics Information and
Communications, Huazhong University of Science
and Technology, China. From 2012 to 2013, he was

a Post-Doctoral Researcher with the Department of Computer Science, Yale
University. His research Interests include data center networks, network
function virtualization, distributed systems, internet streaming, and urban
computing.

Authorized licensed use limited to: Nanjing University. Downloaded on April 20,2025 at 03:14:00 UTC from IEEE Xplore. Restrictions apply.

