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Abstract
Recent advancements in deep learning have significantly in-
creased AI processors’ energy consumption, which is becom-
ing a critical factor limiting AI development. Dynamic Volt-
age and Frequency Scaling (DVFS) stands as a key method
in power optimization. However, due to the latency of DVFS
control in AI processors, previous works typically apply
DVFS control at the granularity of a program’s entire dura-
tion or sub-phases, rather than at the level of AI operators.

The advent of millisecond-level DVFS capabilities on the
latest Ascend NPU platforms enables us to set frequency
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individually for single or multiple operators, opening up the
opportunity for further enhancing energy efficiency through
fine-grained DVFS control. To ensure performance is unaf-
fected in DVFS, our work builds performance and power
models for each operator. Through in-depth timeline analy-
sis, we demonstrate that the cycle count of an operator can be
modeled as a convex piecewise linear function of frequency,
resulting in a performance model with an average error of
1.96%. Moreover, we build power models that incorporate
temperature-dependent terms, which enhances the model’s
precision and results in an average error of 4.62%.
Based on our performance and power models as well as

the fine-grained DVFS functionality of Ascend NPU, we pro-
pose a DVFS strategy that integrates operator classification,
preprocessing, and a genetic algorithm-based search. Exper-
iments on applications including GPT-3 training achieve a
reduction in AICore (the computing component within the
Ascend NPU) power by 13.44% and NPU chip power by 4.95%,
while limiting performance degradation to 1.76%.

CCS Concepts: • Hardware → Chip-level power issues;
• Computing methodologies → Modeling methodolo-
gies; • Computer systems organization → Processors
and memory architectures.
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1 Introduction
In recent years, with the rapid advancement in deep learning,
the demand for computational power has increased signif-
icantly. Accelerators such as GPUs (Graphics Processing
Units) and NPUs (Neural Processing Units) have become pri-
mary computing devices in many computational systems. In
the Top500 list of high-performance computing systems, 63%
of the top 100 systems are equipped with accelerators [37].
High computational power offered by these accelerators

comes at the cost of increased power consumption. NVIDIA
GPUs’ TDP (Thermal Design Power) has increased from
300W for the V100 to 400W for the A100, and up to 700W
for the H100 [30], representing a significant portion of GPU
server power consumption. It is estimated that 1% of global
electricity resources are used in data centers [25], and this
proportion is expected to further increase in the future. Con-
sequently, enhancing the energy efficiency of these accelera-
tors is becoming more critical than ever.
Dynamic Voltage and Frequency Scaling (DVFS) is a key

method in chip power management. It adjusts the frequency
and voltage of the chip to reduce power consumption while
reducing chip performance, or to increase power consump-
tion while improving chip performance. Approaches to op-
timize the energy efficiency of AI accelerators (especially
GPUs) through DVFS have been explored in many stud-
ies [2, 3, 12, 15, 26, 32, 38, 39, 46, 47].

However, previous research typically sets their DVFS con-
trol cycle to be the entire runtime duration of an applica-
tion [2, 3, 12, 15]. While some more advanced DVFS strate-
gies are capable to adjust for sub-phases of an application [32,
38, 39, 46, 47], their DVFS control cycles are still longer than
several seconds, which are not suitable for optimizing AI
operators that execute in milliseconds. Although some stud-
ies have highlighted the importance of shorter-delay DVFS
control [4], their work is only limited to simulations. One
reason for the lack of experimental studies on fine-grained
DVFS optimization is that NVIDIA data center GPUs cur-
rently lack the capability for millisecond-level DVFS control.
Our measurements on NVIDIA GPU V100 found that its typ-
ical delay for frequency control is 15 milliseconds, and other
studies have reported similar delay values [40].

The latest AscendNPU offers fast-acting frequency control
operators with a latency of 1 millisecond, which enables us
to set frequency individually for single or multiple operators,
and it opens up the opportunity for further enhancing en-
ergy efficiency. Leveraging this capability requires accurate
models to predict performance and power across frequencies
and voltages. Then, the trade-offs between performance and
power can be considered to select suitable frequencies to
enhance energy efficiency while maintaining performance.

Existing DVFS-aware performance modeling methods typ-
ically either summarize patterns from empirical results [1,
6, 12] or build black-box models using machine learning [3,
8, 41, 43]. These approaches do not provide a detailed un-
derstanding of the nature of the frequency-performance re-
lationship. In this work, we present a white-box analysis
of operator execution in multiple scenarios by comparing
the time consumption of core computation and two type
of memory access (load and store). Based on this analysis,
we conclude that the cycle counts for executing an operator
can be modeled as a piecewise linear function of the chip
frequency, and with increasing frequency, the slope of each
segment gradually increases. Based on these findings, we
fit performance models for AI operators under DVFS con-
trol, with experimental results for over 5,000 operators on 6
frequency points showing an average error of 1.96%.
To improve energy efficiency, building a power model

for AI accelerator is important, and approaches to building
power models have been explored in many studies [7, 11,
13, 19, 26, 34]. However, existing work seldom considers the
temperature factor in chip power, whose variations could af-
fect a chip’s subthreshold leakage current [36]. In this work,
we incorporate the temperature factor into power modeling
to enhance accuracy. Validation on seven workloads demon-
strates that our modeling has an average error of 4.62%.
Based on our performance and power models, we apply

DVFS control on AI operators to improve energy efficiency.
However, the fine-grained DVFS capability introduces a large
search space. To address this challenge, we integrate oper-
ator classification, preprocessing, and a genetic algorithm-
based search to generate DVFS strategies. Our experiments
demonstrate that our approach could reduce AICore power
by 13.44%, NPU chip power by 4.95% on average, while the
average performance loss is only 1.76%.

This paper summarizes our experience in end-to-end power
optimization in Ascend NPU. We hope that sharing our ex-
perience can inspire similar efforts and contribute to sus-
tainable computation. In summary, this paper makes the
following contributions:

• We present timeline analysis for operators on AI accelera-
tors, demonstrating that the cycle count of an operator can
be modeled as a convex piecewise linear function of fre-
quency. Our performance modeling based on this analysis
shows an average error of 1.96%.
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Figure 1. End-to-end energy optimization process.
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Figure 2.Memory hierarchy of GPU and NPU.

• We develop power consumption models for AI accelerator
operators, incorporating a temperature-dependent term
to enhance accuracy, with our experiments demonstrating
an average error of 4.62%.

• We propose a DVFS strategy for accelerators support-
ing millisecond-level DVFS control. Our strategy inte-
grates operator classification, preprocessing, and a genetic
algorithm-based search. Experiments on applications in-
cluding GPT-3 training achieve a reduction in AICore
power by 13.44% and NPU chip power by 4.95%, while
limiting performance degradation to 1.76%.

2 Background
2.1 DVFS
DVFS is a prevalent energy management technique for CPUs,
GPUs, and NPUs. Its core aim is to dynamically adjust the
voltage and frequency of a chip during operation to meet
varying performance requirements, whether enhancing per-
formance or improving energy efficiency in different scenar-
ios. Since the dynamic power consumption of a chip is pro-
portional to 𝑉 2 𝑓 [10], DVFS can directly alter the chip’s en-
ergy consumption. Except for the under voltage scenario [27],
changing the chip’s voltage and frequency in a proper range
only affects the speed of computation without compromis-
ing correctness. Therefore, DVFS has been widely applied in
various scenarios that demand high energy efficiency, such
as in smartphone chips and embedded devices.
As DNNs advance and accelerator energy consumption

rises, there is a growing trend to implement DVFS on accel-
erators. Unlike CPUs with refined DVFS capabilities, acceler-
ators often lack optimized strategies, leading to suboptimal
energy consumption [46]. Moreover, as these accelerators
are often used in high-performance scenarios, energy opti-
mization should not compromise application performance.

2.2 Accelerator Memory Hierarchy
The rapid growth of deep learning networks has led to the
development of various accelerators, with Huawei’s Ascend
NPU being a notable example. The hardware architecture
of Ascend NPU is introduced in detail in Ref. [23, 24], and
interested readers can refer to them for more information.
However, our work does not rely on such detailed hardware
architecture but rather on an abstraction of its memory hi-
erarchy, featuring an L1 cache in each AICore, a shared L2
cache, and High Bandwidth Memory (HBM), as illustrated in
Fig. 2. This abstraction forms the basis of the generalization
of our work, which will be discussed further in Sect. 8.3.
On the Ascend NPU, the core and uncore operate in sep-

arate frequency domains, allowing independent frequency
adjustment. Since the L1 cache operates within the core do-
main and the L2 cache, along with HBM, belongs to the
uncore domain, the rate of data transfer between the core
domain and the uncore domain is determined by both fre-
quencies. Our work focuses on analyzing these transfer rates,
applicable regardless of computing unit design specifics.

3 Overview
For clarity, our paper will follow the organization of the
end-to-end energy optimization process depicted in Fig. 1.
In Sect. 4, we will introduce our timeline analysis method,
derive the conclusion that the cycle count of an operator
can be modeled as a convex function of frequency, and dis-
cuss our performance modeling based on this conclusion.
In Sect. 5, we will explain how we incorporate temperature
factors into our power modeling process. In Sect. 6, we will
present our approach to address the challenges posed by the
fine-grained DVFS capability using genetic algorithms for
DVFS strategy generation. In addition, in Sect. 7.1, we will
briefly outline how we leverage the fine-grained frequency
adjustment operators provided by Ascend CANN (Compute
Architecture for Neural Networks) to achieve operator-level
frequency adjustment when executing DVFS strategies. Note
that this work focuses on the frequency scaling of the core
domain. The frequency adjustment in the uncore domain is
not discussed since Ascend NPU does not support it.

4 Performance Model
In this section, we extensively analyze the mechanism of fre-
quency adjustment on the performance of Ascend NPUs. By
comparing the execution time of core computation and load
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Figure 3. The relationship between Ld/St throughput and
frequency, and the relationship between cycle count and
frequency with fixed memory access volume.

(Ld), store (St) operations in white-box timeline analysis, we
identify computational and memory bottlenecks at different
frequencies. Based on this analysis, we propose a method
for modeling NPU performance under DVFS control.

4.1 Ld/St Bandwidth Analysis
As Ld/St involves different memory hierarchies located in
the core domain and uncore domain, their throughput (𝑇𝑝)
is influenced by both the core frequency (𝑓 ) and the uncore
bandwidth limitations, following the relationship below:

𝑇𝑝 (𝑓 ) =𝑚𝑖𝑛(𝐶 × 𝑓 × 𝑐𝑜𝑟𝑒_𝑛𝑢𝑚, 𝐵𝑊𝑢𝑛𝑐𝑜𝑟𝑒 ). (1)

In Eq. (1), 𝐶 is a hardware-specific constant determined by
factors such as the port width of the bus. 𝐵𝑊𝑢𝑛𝑐𝑜𝑟𝑒 denotes
the peak uncore memory bandwidth, influenced by the L2
Cache bandwidth, HBM bandwidth, and L2 Cache hit rate.

According to Eq. (1), Ld/St throughput increases with core
frequency until the uncore bandwidth is saturated, as in
Fig. 3(a). The saturation frequency point 𝑓𝑠 marks this tran-
sition and is derived from Eq. (2):

𝑓𝑠 =
𝐵𝑊𝑢𝑛𝑐𝑜𝑟𝑒

𝐶 × 𝑐𝑜𝑟𝑒_𝑛𝑢𝑚
. (2)

Assuming 𝑀 is the Ld/St data transfer volume and 𝑇 is its
execution time, we have the following relationship:

𝑇 =
𝑀

𝑇𝑝 (𝑓 ) +𝑇0, (3)

𝐶𝑦𝑐𝑙𝑒 (𝑓 ) = 𝑇 × 𝑓 =
𝑀

𝑇𝑝 (𝑓 ) 𝑓 +𝑇0 𝑓

=𝑚𝑎𝑥 ( 𝑀

𝐵𝑊𝑢𝑛𝑐𝑜𝑟𝑒

𝑓 ,
𝑀

𝐶 × 𝑐𝑜𝑟𝑒_𝑛𝑢𝑚
) +𝑇0 𝑓 . (4)

The constant𝑇0 here represents the fixed time overhead of
memory access, including time for initiation of the operation,
signal propagation, etc. With a fixed memory access volume
𝑀 , Eq. (4) illustrates the cycle-frequency relationship for
Ld/St, as shown in Fig. 3(b). Note that the term ’cycle’ men-
tioned in this paper refers to the cycles in the core domain.

Our model considers the dependency of the Ld/St time 𝑇
on the core frequency, an aspect that some previous works
have overlooked. For instance, in Ref. [28], they assumed that
the stall time of Ld/St is independent of the core frequency.

𝑓

𝐶𝑦𝑐𝑙𝑒

St
Ld

𝑓!𝑓" 𝐿𝑑𝑓#𝑓$(𝑆𝑡)

(a) Cycles of Ld/St.

𝑓

𝐶𝑦𝑐𝑙𝑒

𝑓!𝑓" 𝐿𝑑𝑓#𝑓$(𝑆𝑡)

(b) Cycles of the operator.

Figure 4. An example of PingPong-Free, Independent Ld/St
Scenarios, where 𝐶𝑦𝑐𝑙𝑒𝑆𝑡 (𝑓 ) and 𝐶𝑦𝑐𝑙𝑒𝐿𝑑 (𝑓 ) follow (a), and
operator cycles and frequency follow (b).
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(b) Cycle(Ld) < Cycle(St)

Figure 5. The execution timeline of operators in PingPong-
Free and Independent Ld/St Scenarios.

4.2 Operator Timeline Analysis
In this section, we classify operators on the Ascend NPU
into four categories based on PingPong involvement and the
independence of Ld and St operations and sequentially dis-
sect each category. Our analysis considers computations and
internal data transfers on the AICore as core operations. This
encompasses cube and scalar computations by the cube core,
scalar computations by the vector core, andMTE1 operations
(which facilitate memory transfers within the AICore).

4.2.1 PingPong-Free and Independent Ld/St Scenar-
ios. PingPong, or double-buffering, optimizes computing
resource utilization by segmenting buffers to allow simulta-
neous data pre-transfer and current computation. This en-
sures data readiness for subsequent computations, reducing
wait times for data transfers.

When the workload does not engage in PingPong op-
erations and there are no dependencies between Ld and
St, an AI operator that consists of 𝑛 core computations re-
quires 𝐶𝑦𝑐𝑙𝑒 (𝐿𝑑) cycles to move-in data at the beginning,
and 𝐶𝑦𝑐𝑙𝑒 (𝑆𝑡) cycles to move-out data at the end, as well as
(𝑛 − 1) ∗𝑚𝑎𝑥 (𝐶𝑦𝑐𝑙𝑒 (𝐿𝑑),𝐶𝑦𝑐𝑙𝑒 (𝑆𝑡)) cycles to move-in and
move-out data between the 𝑛 core computations, as illus-
trated in Fig. 5. We refer to the time when AICore is not
performing computations as ’stall’. The use of𝑚𝑎𝑥 () corre-
sponds to the fact that those move-in and move-out cycles
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Figure 6. The execution timeline of operators in PingPong-
Free and dependent Ld/St Scenarios.

can be processed simultaneously due to the Ld/St indepen-
dence, and the core computation does not overlap with Ld/St
due to the PingPong-free property. As a result, combined
with the cycles of Ld/St expressed by Eq. (4), the function
describing the number of cycles consumed by the operator
in relation to frequency can be represented as:

𝐶𝑦𝑐𝑙𝑒 (𝑓 ) = 𝐶𝑦𝑐𝑙𝑒 (𝐿𝑑) +𝐶𝑦𝑐𝑙𝑒 (𝑆𝑡) + 𝑛 ×𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒) (5)
+ (𝑛 − 1) ×𝑚𝑎𝑥 (𝐶𝑦𝑐𝑙𝑒 (𝐿𝑑),𝐶𝑦𝑐𝑙𝑒 (𝑆𝑡))

=𝑚𝑎𝑥 (𝑎1 𝑓 , 𝑐1) +𝑚𝑎𝑥 (𝑎2 𝑓 , 𝑐2) + 𝑛 ×𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒)
+ (𝑛 − 1) ×𝑚𝑎𝑥 (𝑎1 𝑓 , 𝑐1, 𝑎2 𝑓 , 𝑐2) + (𝑛 + 1) ×𝑇0 𝑓 .

In this equation, there are 𝑇0 > 0, and 𝑎1, 𝑎2, 𝑐1, 𝑐2 > 0. It
is easy to find out that the given equation represents a piece-
wise linear function with an increasing derivative through
a case-by-case discussion. An example is given as Fig. 4.
When 𝐶𝑦𝑐𝑙𝑒𝑆𝑡 (𝑓 ) and 𝐶𝑦𝑐𝑙𝑒𝐿𝑑 (𝑓 ) satisfy the relationship in
Fig. 4(a), the relationship between the cycles consumed by
the operator and the frequency satisfies Fig. 4(b).

4.2.2 PingPong-Free and Dependent Ld/St Scenarios.
When the workload does not engage in PingPong opera-
tions and there are dependencies between Ld and St, data
move-in and move-out cannot be processed simultaneously.
Therefore, an AI operator that consist of n core computations
require 𝑛𝐶𝑦𝑐𝑙𝑒 (𝐿𝑑) cycles to move-in data, 𝑛𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒) cy-
cles to complete computation and 𝑛𝐶𝑦𝑐𝑙𝑒 (𝑆𝑡) to move-out
data, as illustrated in Fig. 6. Therefore, combined with the
cycles of Ld/St expressed by Eq. (4), the function describing
the number of cycles consumed by the operator in relation
to frequency can be represented as Eq. (6).

𝐶𝑦𝑐𝑙𝑒 (𝑓 ) = 𝑛 ∗ (𝐶𝑦𝑐𝑙𝑒 (𝐿𝑑) +𝐶𝑦𝑐𝑙𝑒 (𝑆𝑡) +𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒)) (6)
= 𝑛 ∗ (𝑚𝑎𝑥 (𝑎1 𝑓 , 𝑐1) +𝑚𝑎𝑥 (𝑎2 𝑓 , 𝑐2) +𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒) + 2𝑇0 𝑓 ).

4.2.3 PingPong and Independent Ld/St Scenarios. In
the PingPong and independent Ld/St scenarios, we discuss
the composition of 𝐶𝑦𝑐𝑙𝑒 (𝑓 ) based on the three possible
cases of𝑚𝑎𝑥 (𝐶𝑦𝑐𝑙𝑒 (𝐿𝑑),𝐶𝑦𝑐𝑙𝑒 (𝑆𝑡),𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒)), as presented
in Fig. 7. In the figure, the critical path for each case is
highlighted in red font. Through the analysis of the three
graphs, we observe that, except for the Ld, St, and core com-
putations that cannot be overlapped at the beginning or
end, the remaining segments of the critical path consist of
(𝑛−1)×𝑚𝑎𝑥 (𝐶𝑦𝑐𝑙𝑒 (𝐿𝑑),𝐶𝑦𝑐𝑙𝑒 (𝑆𝑡),𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒)). Therefore,
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Figure 7. The execution timeline of operators in PingPong
and Independent Ld/St Scenarios.
the function representing the number of cycles of the op-
erator with respect to frequency in this scenario can be ex-
pressed as Eq. (7).

𝐶𝑦𝑐𝑙𝑒 (𝑓 ) =𝐶𝑦𝑐𝑙𝑒 (𝐿𝑑) +𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒) +𝐶𝑦𝑐𝑙𝑒 (𝑆𝑡)
+(𝑛 − 1)∗𝑚𝑎𝑥 (𝐶𝑦𝑐𝑙𝑒 (𝐿𝑑),𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒),𝐶𝑦𝑐𝑙𝑒 (𝑆𝑡)) (7)

=𝑚𝑎𝑥 (𝑎1 𝑓 ,𝑐1) +𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒) +𝑚𝑎𝑥 (𝑎2 𝑓 , 𝑐2) + (𝑛 − 1) ∗𝑚𝑎𝑥 (
𝑚𝑎𝑥 (𝑎1 𝑓 ,𝑐1) +𝑇0 𝑓 ,𝑚𝑎𝑥 (𝑎2 𝑓 , 𝑐2) +𝑇0 𝑓 ,𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒)) + 2𝑇0 𝑓

4.2.4 PingPong and Dependent Ld/St Scenarios. In the
PingPong and dependent Ld/St scenarios, we continue to
analyze the composition of𝐶𝑦𝑐𝑙𝑒 (𝑓 ) based on the three possi-
ble cases of𝑚𝑎𝑥 (𝐶𝑦𝑐𝑙𝑒 (𝐿𝑑),𝐶𝑦𝑐𝑙𝑒 (𝑆𝑡),𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒)). As pre-
sented in Fig. 8, the critical path for each case is highlighted
in red font. Through the analysis of the three graphs, we ob-
serve that, apart from the initial𝑚𝑎𝑥 (𝐶𝑦𝑐𝑙𝑒 (𝐿𝑑),𝐶𝑦𝑐𝑙𝑒 (𝑆𝑡),
𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒)) segment that cannot be overlapped, the remain-
ing portion of the critical path consists of 𝑛

2 × (𝐶𝑦𝑐𝑙𝑒 (𝐿𝑑) +
𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒) +𝐶𝑦𝑐𝑙𝑒 (𝑆𝑡)). Therefore, the function represent-
ing the cycle count of the operator with respect to frequency
in this scenario can be expressed as Eq. (8).

𝐶𝑦𝑐𝑙𝑒 (𝑓 ) =𝑛
2
∗ (𝐶𝑦𝑐𝑙𝑒 (𝐿𝑑) +𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒) +𝐶𝑦𝑐𝑙𝑒 (𝑆𝑡))

+𝑚𝑎𝑥 (𝐶𝑦𝑐𝑙𝑒 (𝐿𝑑),𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒),𝐶𝑦𝑐𝑙𝑒 (𝑆𝑡)) (8)

=
𝑛

2
∗ (𝑚𝑎𝑥 (𝑎1 𝑓 , 𝑐1) +𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒) +𝑚𝑎𝑥 (𝑎2 𝑓 , 𝑐2)) +𝑚𝑎𝑥 (

𝑚𝑎𝑥 (𝑎1 𝑓 ,𝑐1) +𝑇0 𝑓 ,𝑚𝑎𝑥 (𝑎2 𝑓 , 𝑐2) +𝑇0 𝑓 ,𝐶𝑦𝑐𝑙𝑒 (𝑐𝑜𝑟𝑒)) + 𝑛𝑇0 𝑓
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Figure 8. The execution timeline of operators in PingPong
and Dependent Ld/St Scenarios.

4.2.5 Timeline Analysis Conclusion. It is easy to find
out that Eqs. (5), (6), (7), (8) all represent a piecewise linear
function with an increasing derivative through a case-by-
case discussion.Moreover, we can find that all 4 equations are
composed of a combination of𝑚𝑎𝑥 () and linear functions,
both of which are commonly known as convex functions in
mathematics. Therefore, the composition of these functions
also yields a convex function, which possesses the properties
relied upon in Sect. 4.3 for performance model construction.

4.3 Performance Model Construction
Following the conclusion derived in the previous section,
it is necessary to consider the relationships between the
AICore’s frequency range [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 ] and the breakpoints
of the piecewise linear function to finalize the performance
model for the AICore. Taking the function shown in Fig. 4(b)
as an example, different relationships between [𝑓𝑚𝑖𝑛,

𝑓𝑚𝑎𝑥 ] and 𝑓𝑠 (𝑆𝑡), 𝑓2, 𝑓𝑠 (𝐿𝑑), 𝑓1 can result in a performance
model containing from one to five linear segments.
We have derived the AICore performance model, yet di-

rectly solving piecewise linear functions for each operator
faces practical challenges:
• The current PMU (performance monitoring unit) cannot
track the distribution of stalls within the core during oper-
ator execution. Therefore, it is impossible to identify the
breakpoints, and consequently, the number of segments
of the function cannot be determined.

• Modeling requires running operators at different frequen-
cies to collect performance data, yet each run consumes

time and computational resources. Thus, minimizing the
number of runs at different frequencies is crucial for con-
serving both time and resources.

Given the limitations discussed, we opt for a fitting ap-
proach to model the cycle count consumed by operators in
relation to frequency. As our analysis in Sect. 4.2, we deduce
that the functions selected for fitting must be convex.
We choose exponential and quadratic functions for fit-

ting the cycle count to frequency relation, each with three
parameters. To fit these, performance data across three fre-
quencies is required per operator. However, this process
involves running model training at each frequency, which,
despite needing only a single training step after stabiliza-
tion, adds overhead. To reduce data requirements, we refine
our approach by removing the linear term from the qua-
dratic function, keeping only the quadratic and constant
terms. Please note that the objective of the function fitting
discussed here is the variation of operator cycle consump-
tion with frequency. Combined with𝑇 (𝑓 ) = 𝐶𝑦𝑐𝑙𝑒 (𝑓 )/𝑓 , we
finally consider using the following three functions to fit the
operator’s time consumption: Function 1: 𝑇 (𝑓 ) = 𝑎𝑓 2+𝑏𝑓 +𝑐

𝑓
,

Function 2: 𝑇 (𝑓 ) = 𝑎𝑓 2+𝑐
𝑓

, Function 3: 𝑇 (𝑓 ) = 𝑎𝑒𝑏𝑓 +𝑐
𝑓

.
Our comparison of the fitting accuracy for the three func-

tions, detailed in Sect. 7.2, reveals that the accuracy of Func. 1
and Func. 2 remains comparable even after the linear term’s
removal. Moreover, when fitting Func. 2, we can directly
calculate parameters 𝑎 and 𝑐 , whereas the other functions
require the scipy curve_fit function, leading to significant
computational time differences. For instance, fitting Func. 2
to 4343 operators in the ShuffleNetV2Plus model takes only
4386ms, versus 105930ms for Func. 1, highlighting a sig-
nificant time saving. Consequently, we opt for Func. 2 in
practical scenarios for its balance of accuracy and efficiency.
Note that the fitting presented here is a best practice de-

rived from the characteristics of piecewise linear functions.
Readers may employ other methods to achievemore accurate
fitting or directly derive piecewise linear functions.

5 Power Model
Achieving precise energy consumption optimization hinges
on an accurate power model. While subthreshold leakage
current’s temperature dependency is recognized [36], it is
often overlooked in current models [7, 11, 13, 19, 26, 34].
Our approach addresses this gap by integrating tempera-
ture into our power models, refining the precision of energy
consumption predictions.

5.1 Frequency-Voltage Relationship
The Ascend NPU allows frequency adjustment with auto-
matic voltage adaptation by its firmware. It supports fre-
quencies ranging from 1000MHz to 1800MHz in 100MHz
increments. Below 1300MHz, voltage is constant regardless
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Figure 9. Voltage-Frequency on Ascend NPU.

of frequency changes, but above this threshold, voltage in-
creases linearly with frequency, as depicted in Fig. 9. This
behavior mirrors the positive correlation between voltage
and frequency observed in NVIDIA GPUs [11, 26, 34].

5.2 Power Composition Analysis
A chip’s power consumption encompasses dynamic power [10]
and static power [5], as formulated by:

𝑃 = 𝑃𝑑𝑦𝑛 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 = 𝐴𝐶𝐿𝑉
2
𝐷𝐷 𝑓 +𝑉𝐷𝐷 𝐼𝑙𝑒𝑎𝑘 . (9)

The first term represents dynamic power, where 𝐴 is the
Activity Factor, indicating the probability of a CMOS unit
changing its state from 1 to 0 or from 0 to 1 within a clock
cycle, and is influenced by circuit design and input signals.
𝐶𝐿 is the load capacitance, 𝑉𝐷𝐷 is the voltage of the chip,
and 𝑓 is the frequency. It encompasses two elements: load-
independent power for idle operations like memory refresh
and power management (𝛽 𝑓𝑉 2), and load-dependent power
arising from computations and communications (𝛼 𝑓𝑉 2).

The static power 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 is primarily generated by leakage
current 𝐼𝑙𝑒𝑎𝑘 , which can be decomposed into subthreshold
leakage current and gate-oxide leakage current [21]. The
subthreshold leakage current can be assumed to be linearly
correlated with temperature [36], expressed as 𝐼𝑠𝑢𝑏 = 𝛾𝑇 +𝐶 ,
where 𝛾 and 𝐶 are constants. The gate-oxide leakage cur-
rent is related to the chip’s features and is also considered a
constant. Therefore, static power can be represented as:

𝑃𝑠𝑡𝑎𝑡𝑖𝑐 = (𝛾𝑇 +𝐶 + 𝐼𝑔𝑎𝑡𝑒 )𝑉
= 𝛾Δ𝑇𝑉 + (𝛾𝑇0 +𝐶 + 𝐼𝑔𝑎𝑡𝑒 )𝑉 . (10)

In the above equation, 𝑇0 denotes the ambient temperature,
and𝑇 = 𝑇0+Δ𝑇 . For a given acceleratormodel, (𝛾𝑇0+𝐶+𝐼𝑔𝑎𝑡𝑒 )
remains constant. To simplify, we denote this constant as 𝜃 .
In summary, the overall power can be represented as:

𝑃 = 𝛼 𝑓𝑉 2 + 𝛽 𝑓𝑉 2 + 𝛾Δ𝑇𝑉 + 𝜃𝑉 . (11)

Below,we divide the power consumption into load-dependent
power and load-independent power for separate analysis.

5.3 Load-Independent Power Consumption
The load-independent power is mainly composed of 𝛽 𝑓𝑉 2

and 𝜃𝑉 . We denote this as 𝑃𝐴𝐼𝐶𝑜𝑟𝑒,𝑖𝑑𝑙𝑒 , such that:

𝑃𝐴𝐼𝐶𝑜𝑟𝑒,𝑖𝑑𝑙𝑒 = 𝛽 𝑓𝑉 2 + 𝜃𝑉 . (12)
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Figure 10. The relationship between temperature and SoC
power. Each line is a different operator.

The 𝑃𝐴𝐼𝐶𝑜𝑟𝑒,𝑖𝑑𝑙𝑒 is determined by voltage and frequency
alone.With constants 𝛽 and 𝜃 for a specific acceleratormodel,
measuring power consumption in the idle state at two fre-
quencies under normal temperature conditions establishes
these values for consistent power modeling.

5.4 Load-Dependent Power Consumption
In Eq. (11), load-dependent power can be divided into temperature-
independent power 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 = 𝛼 𝑓𝑉 2 and temperature-dependent
power 𝑃Δ𝑇 = 𝛾Δ𝑇𝑉 . We will discuss each of them separately.

5.4.1 Temperature-Independent Power Consumption.
According to Eq. (11), 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 can be obtained by:

𝑃𝑎𝑐𝑡𝑖𝑣𝑒 = 𝛼𝐴𝐼𝐶𝑜𝑟𝑒 𝑓 𝑉
2 = 𝑃 − 𝑃𝐴𝐼𝐶𝑜𝑟𝑒,𝑖𝑑𝑙𝑒 − 𝛾𝐴𝐼𝐶𝑜𝑟𝑒Δ𝑇𝑉 . (13)

By following the method described in Sect. 5.4.2 to obtain
𝛾 and measuring Δ𝑇 when collecting power data in online
computation part in Sect. 5.5, we can calculate 𝛼 by

𝛼𝐴𝐼𝐶𝑜𝑟𝑒 =
𝑃 − 𝑃𝐴𝐼𝐶𝑜𝑟𝑒,𝑖𝑑𝑙𝑒 − 𝛾𝐴𝐼𝐶𝑜𝑟𝑒Δ𝑇𝑉

𝑓𝑉 2 . (14)

Note that differing input shapes, even among operators of
the same type, can result in varied power consumption pat-
terns. Hence, individual 𝛼 values must be calculated for each
operator during modeling.

5.4.2 Temperature-Dependent Power Consumption.
The majority of electrical energy during chip operation is
converted into heat, causing the chip temperature to increase
under load until it reaches equilibrium, where the heat gen-
erated equals that dissipated.

To obtain 𝑃Δ𝑇 , we need to determine 𝛾 and Δ𝑇 . To obtain
𝛾 , we first run a test load. After the load is completed, the
temperature and power consumption do not instantaneously
return to their values before the load was running. Instead,
they decrease gradually, the rate of decrease of power con-
sumption with respect to Δ𝑇 is 𝑑𝑃

𝑑Δ𝑇 = 𝛾𝑉 . Therefore, by
collecting the power consumption and corresponding tem-
perature after the load is completed, we can obtain 𝛾 .

We obtain Δ𝑇 through experiments under different loads,
with results depicted in Fig. 10. These experiments reveal a
linear correlation between AICore temperature 𝑇 and SoC
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Figure 11. The Construction of a power model.
power, as follow:

𝑇 = 𝑇0 + 𝑘 × 𝑃𝑆𝑜𝐶 . (15)
To calculate Δ𝑇 during load operation, we initially measure
the SoC power, which encompasses AICore power along
with other components like HBM and bus power. These
can be measured separately using available tools. The SoC
power modeling mirrors the approach for AICore power
consumption, as follows:

𝑃𝑆𝑜𝐶 = 𝛼𝑆𝑜𝐶 𝑓 𝑉
2 + 𝛾𝑆𝑜𝐶Δ𝑇𝑉 + 𝑃𝑆𝑜𝐶,𝑖𝑑𝑙𝑒 . (16)

The interdependence of 𝑃𝑆𝑜𝐶 on Δ𝑇 prevents direct calcula-
tion of their values. We adopt an iterative method, starting
with Δ𝑇 = 0 to estimate 𝑃𝑆𝑜𝐶 , then substituting this estimate
𝑃𝑆𝑜𝐶 into Eq. (15) to obtain Δ𝑇 , and repeating this process
until the values converge, which in our experiments, takes
no more than 4 iterations.

5.5 Power Model Construction
Figure 11 depicts the construction of a power model through
offline and online computation. Offline involves chip analy-
sis—idle and test load—to extract hardware-related param-
eters (𝑃𝐴𝐼𝐶𝑜𝑟𝑒,𝑖𝑑𝑙𝑒 , 𝑃𝑆𝑜𝐶,𝑖𝑑𝑙𝑒 , 𝛾𝐴𝐼𝐶𝑜𝑟𝑒 and 𝑘). Online compu-
tation entails gathering power data at specific frequencies
during operation to derive load-related parameters and fi-
nalize the predictive model.

6 DVFS Strategy Generation
Operators display diverse sensitivities to frequency change.
Compute-bound operators like MatMul sacrifice 6.9% perfor-
mance for a 7.9% power gain, while memory-bound ones like
Gelu could trade a 2% performance drop for a 5% or greater
power gain. Tailoring a DVFS strategy to these sensitivities
is essential for optimizing a chip’s energy efficiency.
In a production setting, we initiate DVFS strategy gener-

ation by executing the target workload, such as training a
model. Simultaneously, we utilize the CANN profiler and
lpmi_tool to collect comprehensive performance and power
data, which is then used for performance and power mod-
eling of individual operators. Subsequently, operators are
classified and preprocessed. Finally, we apply a genetic al-
gorithm, integrating the performance and power models
to identify effective DVFS strategies. Current long-lived AI
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Figure 12. The flowchart of bottleneck classification.

workloads essentially involves the continuous repetition of
the same task (iteration). Each iteration invokes a sequence
of operators that remains consistent. Therefore, once we op-
timize a single iteration, the generated policy can be applied
to all subsequent iterations.

6.1 Classification
The AICore within Ascend NPU comprises components like
cube, vector, scalar, and memory transfer units, which may
operate concurrently during an operator’s execution, each
with a distinct utilization rate, termed its ’ratio’. Based on the
pipeline utilization data obtained from the CANN profiler,
we categorize operators into different bottleneck types:
• An operator is classified as no-pipeline bound if the sum
of its ratio in all pipelines is less than 1, indicating the
presence of free time during execution. These operators
typically exhibit short execution times, with a notable
portion of time spent on pre- and post-processing tasks.

• Latency-bound operators, defined by a maximum ratio of
less than 0.8, suffer from suboptimal pipeline arrangement.
This deficiency may arise due to factors like the lack of
PingPong strategies or inherent design flaws.

• Operators are classified as uncore-bound when their maxi-
mum ratio pertains to pipelines in the uncore domain. For
instance, Ld/St reflect data transfers between the uncore
and core domains. The performance of such operators is
influenced by frequencies of both domain.

• When the maximum ratio is attributed to the pipeline
in the core domain, it is classified as core-bound. Exam-
ples include cube-bound, scalar-bound, vector-bound, and
MTE1-bound operations. In such cases, the performance
of the operator depends on the frequency within the core.

Table 1. Classification of operators based on their sensitivity
to AICore frequency.

AICore Frequency-
Sensitive Operators

cube-bound, scalar-bound,
vector-bound, MTE1-bound,
latency-bound operators

AICore Frequency-
Insensitive Operators

Ld-bound, St-bound,
AICPU, idle and

communication operators
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Besides compute operators, on the Ascend NPU, there
are also AICPU operators, communication operators, and
idle modes generated by scheduling, which are minimally
affected by the AICore frequency. We thus categorize opera-
tors into two types: those sensitive to AICore frequency and
those insensitive, as detailed in Table 1.

6.2 Preprocessing
Given the large number of operators in deep learning mod-
els, a brute-force search for each in frequency space is im-
practical due to high computational costs. Therefore, pre-
processing operators with knowledge of their bottlenecks is
essential. The process involves four key steps, as depicted in
Fig. 13. These steps entail:
1. We initially gather the execution sequence and profiling

data of operators using the CANN profiler, considering
significant gaps between executions as idle time.

2. Based on the profiling data of the operators, we analyze
the bottleneck types according to the classificationmethod
proposed in Sect. 6.1.

3. We divide the execution process into Low Frequency Can-
didate (LFC) and High Frequency Candidate (HFC) stages
based on the operators’ sensitivity to frequency changes,
with HFC for those more affected and LFC for the less
sensitive. The start of each stage serves as the initial fre-
quency candidate point.

4. Frequency candidates are refined based on the frequency
adjustment interval (e.g., 5ms). Candidates with intervals
shorter than the threshold are merged with adjacent can-
didates to obtain new frequency candidates.

6.3 Search
We employ genetic algorithms (GA) [9, 14, 22, 33] to opti-
mize our solution space effectively, leveraging their natural-
inspired mechanisms—crossover, mutation, and selection—to
evolve towards global optima. This section outlines our GA’s
initialization and objective function configurations.
Based on the preprocessing described in Sect. 6.2, we ob-

tain 𝑛 frequency candidate points, denoted as {𝑠1, 𝑠2, ..., 𝑠𝑛},
with durations {𝑑1, 𝑑2, ..., 𝑑𝑛}.We denote the hardware-supported
frequency points as {𝑓1, 𝑓2, ..., 𝑓𝑚}.

6.3.1 Initialization. Performance Baseline: We define
the performance and power at the highest frequency as the
baseline, denoted as 𝑃𝑒𝑟𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and 𝑃𝑜𝑤𝑒𝑟𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , respec-
tively. When the performance loss target is less than 2%, the
lower bound of performance is 𝑃𝑒𝑟𝑙𝑏 = 𝑃𝑒𝑟𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 × 0.98.
Search Space: As described earlier, the search space can be
represented as {𝑓𝑖,1, 𝑓𝑖,2, . . . , 𝑓𝑖,𝑛}, where 𝑖 denotes different in-
dividuals in GA, and each element 𝑓𝑖, 𝑗 belongs to {𝑓1, 𝑓2, . . . , 𝑓𝑚}.
First Generation Population: Our initial generation popu-
lation comprises baseline and prior individuals, with baseline
frequencies maximized at 1800MHz and prior individuals’
LFC set to 1600MHz, HFC set to 1800MHz. The rest of the
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Figure 13. Illustrations of each preprocessing step.

population receives random frequencies ranging from 1000
to 1800 MHz in 100 MHz steps.

6.3.2 Individual Scoring. For each individual {𝑓𝑖,1, 𝑓𝑖,2, . . . ,
𝑓𝑖,𝑛}, we use the obtained performance model and power
model to predict the performance 𝑃𝑒𝑟𝑖, 𝑗 and power consump-
tion 𝑃𝑜𝑤𝑒𝑟𝑖, 𝑗 during the interval [𝑠 𝑗 , 𝑠 𝑗 + 𝑑 𝑗 ] for each stage.
Then, we sum up the predicted data for all n stages to obtain
the performance 𝑃𝑒𝑟𝑖 and power consumption 𝑃𝑜𝑤𝑒𝑟𝑖 .
To ensure compliance with the performance loss thresh-

old, we assign different scores to individuals based on their
performance. As per Eq. (17), those not meeting the target
(i.e., 𝑃𝑒𝑟𝑖 < 𝑃𝑒𝑟𝑙𝑏 ) receive lower scores as a penalty.

𝑆𝑐𝑜𝑟𝑒𝑖 =


2 × 𝑃𝑒𝑟𝑖

2

𝑃𝑜𝑤𝑒𝑟𝑖
, 𝑃𝑒𝑟𝑖 ≥ 𝑃𝑒𝑟𝑙𝑏

𝑃𝑒𝑟𝑖
2

𝑃𝑜𝑤𝑒𝑟𝑖
, 𝑃𝑒𝑟𝑖 < 𝑃𝑒𝑟𝑙𝑏

(17)

6.3.3 Generating New Individuals. In each iteration, we
need to generate the next generation population through
crossover and mutation. For crossover, with a certain proba-
bility, we exchange the last 𝑘 frequency settings of two indi-
viduals 𝑖1 and 𝑖2, where 𝑘 is a randomly chosen value. This in-
volves swapping {𝑓𝑖1,𝑛−𝑘+1, 𝑓𝑖1,𝑛−𝑘+2, . . . , 𝑓𝑖1,𝑛}with {𝑓𝑖2,𝑛−𝑘+1,
𝑓𝑖2,𝑛−𝑘+2, . . . , 𝑓𝑖2,𝑛}. For mutation, with a certain probability,
we change 𝑓𝑖, 𝑗 to 𝑓𝑡 , where 𝑖 , 𝑗 , and 𝑓𝑡 are randomly chosen
values, and 𝑓𝑡 belongs to {𝑓1, 𝑓2, . . . , 𝑓𝑚}.

In each iteration, individuals receive scores that reflect
their environmental adaptation and requirement fulfillment,
with higher scores denoting superior adaptation. The likeli-
hood of selection for crossover and mutation is score-based,
ensuring the propagation of advantageous traits in subse-
quent generations.

7 Evaluation
In this section, we initially provide an overview of our ap-
proach to utilizing fine-grained frequency adjustment oper-
ators. Subsequently, we detail the experimental outcomes
obtained on the latest Ascend NPU.

7.1 Frequency Setting Mechanism
Ascend CANN features a SetFreq operator for rapid fre-
quency adjustment within 1ms, significantly faster than
Nvidia GPU V100’s 15ms delay[40]. This capability enables
us to execute fine-grained DVFS at the operator level. In
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Figure 14. Timeline diagram of executing SetFreqs.

Ascend CANN, this operator can be dispatched and executed
in the same way as computational operators. We integrate
it into the PyTorch Adaptor1 and implement a DVFS Execu-
tor. This executor reads the strategy generated in the DVFS
Strategy Generate phase and automatically inserts SetFreq
operators without modifying user code. As shown in Fig. 14,
thanks to the low latency and stable activation time of the
SetFreq operator, we subtract the SetFreq latency (1ms) from
the frequency adjustment time point and identify the last
operator before the resulting time point as the SetFreq trig-
ger. At this trigger time, we dispatch and execute a SetFreq
operator on a dedicated SetFreq stream. To ensure that the
SetFreq operator begins execution at the intended location
and finishes execution before the operator at the frequency
adjustment time point, we utilize the Event Record and the
Event Wait mechanisms in PyTorch to synchronize between
the compute stream and the SetFreq stream, achieving pre-
cise asynchronous DVFS at the operator level.

7.2 Performance Model
To assess the performance model’s accuracy, we used the
CANN profiler to gather execution times for operators across
seven models: Resnet50, Vit_base, Bert, Deit_small, AlexNet,
ShufflenetV2plus, and VGG19. Running each model once at
specific frequencies suffices to collect comprehensive per-
formance data for all operators, making the data collection
process simplified.
A subset of operators with execution times below 20 mi-

croseconds, accounting for 58.3% of the total, show high
variability and contribute minimally, at 0.9%, to the total
execution time. This suggests that prediction errors on these
operators are unlikely to significantly impact the overall
prediction errors of the models. Therefore, we opted to ex-
clude them from our analysis. This decision still left us with
substantial data, covering over 5,000 operators across 6 fre-
quency points, totaling over 30,000 data points.
For each operator, we apply the three functions from

Sect. 4.3 to fit performance data across two to three fre-
quency points. We then use the fitted functions to predict
the performance at other frequency points and compare
these predictions with the actual performance data obtained
from testing. The cumulative distribution function (CDF) of
the error rates for the functions is shown in Fig. 15.

1https://gitee.com/ascend/pytorch
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Figure 15. CDF graphs of performance modeling error rates
using three functions for fitting.

We select five representative operators—Add, RealDiv, Re-
duceMean, Conv2D, and BNTrainingUpdate—spanning exe-
cution times from 20us to 300us. We present their predicted
performance and prediction error rates in Fig. 16. From the
examples shown in the figure, we can observe that in most
cases, the fitting error rates of Func. 2 are relatively low, ac-
curately capturing the variations in operator running times.

Please note that due to the propensity for overflow when
fitting using Func. 3 in Python, we have to limit the range of
parameter 𝑏 to [0, 10], thereby compromising fitting accu-
racy. Therefore, we conclude that Func. 3 is not appropriate
for this scenario. Conversely, Func. 2, which is employed for
the final model, yields over 90% accurate predictions within a
5% error margin, exceeds 98% within 10%, and demonstrates
an average error of 1.96%, affirming the model’s reliability.

Table 2. Error of predicted results of our power model. The
first row shows the error ranges, and the second row shows
the percentages of predictions.

(0, 1%] (1%, 5%] (5%, 10%] (10%, +∞) Avg
22.2% 42.6% 42.2% 19.4% 4.62%

7.3 Power Model
To validate the accuracy of the power model, we use the
training of GPT3, Bert, VGG19, ResNet50, ViT models, and
Softmax and Tanh operators as our test subjects. Power data
was collected at varying frequencies with Ascend’s lpmi_tool,
and we use the 1000MHz and 1800MHz data to build our
model. This model was then applied to predict consumption
at additional frequencies, with results detailed in Table 2.

Table 2 shows that our power model achieves an error of
less than 1% for 22.2% of predictions, less than 5% for 64.8%
of predictions, and less than 10% for over 80% of predictions.
The average error is 4.62%.

Additionally, by setting the temperature coefficient 𝛾 to
zero, we assessed the model’s prediction accuracy without
considering thermal effects, resulting in an average error
of 4.97%. In fact, if our model does not consider thermal ef-
fects, the temperature-dependent power 𝑃Δ𝑇 = 𝛾Δ𝑇𝑉 will
be classified as active power 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 = 𝛼 𝑓𝑉 2. If we approxi-
mately assume 𝑉 = 𝑘 𝑓 , then there are 𝑃Δ𝑇 ∝ 𝑓 , 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 ∝ 𝑓 3,
resulting in an increased rate of change, thus introducing

1127



Using Analytical Performance/Power Model and Fine-Grained DVFS to... ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

1200 1400 1600
20

22

24

26

28

T
im

e 
(u

s)
Add

1200 1400 1600
0.000

0.025

0.050

0.075

0.100

0.125

0.150

E
rr

o
r

1200 1400 1600
35

40

45

50

55
RealDiv

1200 1400 1600
0.000

0.025

0.050

0.075

0.100

0.125

0.150

1200 1400 1600

80

85

90

95

100

ReduceMean

T(f) = (af
2
+ c)/f T(f) = (af

2
+ bf + c)/f T(f) = (ae

bf
+ c)/f real

1200 1400 1600

Frequency (MHz)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

1200 1400 1600

80

90

100

110

Conv2D

1200 1400 1600
0.000

0.025

0.050

0.075

0.100

0.125

0.150

1200 1400 1600

220

240

260

280

300

BNTrainingUpdate

1200 1400 1600
0.000

0.025

0.050

0.075

0.100

0.125

0.150

Figure 16. The performance prediction results and error rates of five example operators.
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modeling errors. Our measured data indicate that the 𝑃Δ𝑇
of AICore is approximately 3 to 8 W, accounting for about
10% to 20% of the AICore’s total power. Given this relatively
low proportion, the accuracy improvement brought about
by introducing the temperature factor is diminished. Never-
theless, this does not imply that our efforts are unimportant,
as our theoretical derivation can be translated into a small
amount of engineering code implementation, which can fur-
ther enhance the accuracy of energy consumption modeling.

7.4 End-to-End Energy Optimization
We perform end-to-end energy optimization on several com-
mon deep learning models, following the process in Fig. 1.
We start by training models at 1000MHz and 1800MHz, col-
lecting performance and power data once stable training is
achieved. These data are then used to construct performance
and power models as described in Sect. 4 and 5.

We then integrate the developed performance and power
models into the DVFS Strategy Generation process for indi-
vidual scoring. Utilizing the generated strategy, we conduct
a subsequent training iteration. Upon stabilization, we col-
lect and compare performance and power data against the
baseline 1800MHz frequency results.
When generating DVFS strategy, we set the frequency

adjustment interval to 5ms, the population size per round to
200, the mutation rate of the population to 0.15, and run 600

iterations. Using GPT3 model training as a test workload,
we evaluated the search algorithm’s performance and the
effectiveness of strategies under various performance loss
targets. As depicted in Fig. 17, stricter performance loss tar-
gets accelerate search convergence. When the performance
loss target is set to 2%, the prior individuals we introduce
are already optimal. Across all configurations, the search
converges within 500 rounds, each within 2.5 seconds.

In our experiments, GPT3 has around 18,000 operators per
iteration. The generated policy triggers 821 SetFreq, averag-
ing one SetFreq for every 20 operators.With the performance
loss target set at 10%, our policy sets the LFC to low values,
around 1200 MHz, while the frequency for the HFC remains
high. To validate the policy, we reviewed the visualized trace
collected by the CANN profiler during GPT-3 training. For
example, we find an instance where, right before executing
a compute-bound Matmul operator, the AICore frequency
is increased from 1100MHz to 1800MHz. After the operator
finished, the frequency reverted to 1100 MHz„ which aligns
with the required frequency scaling logic.

Table 3 displays the impact of varying performance loss
targets on power consumption using the GPT3 model. A
2% performance loss target emerges as optimal, achieving
substantial power savings with minimal performance impact.
Beyond this target, the power reduction rate slows, indicat-
ing diminishing returns. When applying the 2% target in
production, we observe an average AICore power reduction
of 13.44% and a 4.95% decrease in SoC power across four
models, with an average performance loss of 1.76%. Among
these, the BERT model achieves the highest AICore power
reduction at 17.08%.
To demonstrate the significance of the millisecond-level

DVFS control and fine-grained DVFS, we conduct some com-
parative experiments on the training of GPT-3. In the first
experiment, we delay the deployment of the SetFreq operator
by 14ms to simulate the delay of the frequency adjustment
operator in NVIDIA V100. As in Fig. 18, this delay resulted
in a 1.69% performance drop but significantly less power sav-
ings: 7.07% for AICore and 3.41% for SoC. This is an expected
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Table 3. End-to-end experimental results.

Model Performance
loss target

Original
iteration time

Iteration time
under DVFS

Performance
loss

Original
SoC power

SoC power
under DVFS

SoC power
reduction

Original
AICore power

AICore power
under DVFS

AICore power
reduction

GPT3 2% 11.29s 11.47s 1.59% 250.04W 236.14W 5.56% 45.92W 38.91W 15.27%
GPT3 4% 11.29s 11.66s 3.28% 250.04W 232.58W 6.98% 45.92W 36.62W 20.25%
GPT3 6% 11.29s 11.85s 4.96% 250.04W 226.65W 9.35% 45.92W 34.13W 25.68%
GPT3 8% 11.29s 12.10s 7.17% 250.04W 223.40W 10.65% 45.92W 32.25W 29.77%
GPT3 10% 11.29s 12.26s 8.59% 250.04W 220.11W 11.97% 45.92W 31.22W 32.01%
BERT 2% 0.309s 0.315s 1.78% 261.8W 244.5W 6.61% 56.2W 46.6W 17.08%
ResNet50 2% 0.317s 0.322s 1.8% 232.7W 224.7W 3.44% 43.8W 38.96W 11.05%
ResNet152 2% 0.637s 0.649s 1.88% 235.6W 225.7W 4.20% 46.94W 42.07W 10.37%

result. Due to the delay of the frequency adjustment oper-
ator, some operators in the LFC run at higher frequencies
before the lower frequency takes effect, while some opera-
tors in the HFC run at lower frequencies before the higher
frequency takes effect. Consequently, this delay not only
leads to a greater performance decline but also reduces the
energy savings. This result underscore the enhanced power
optimization capabilities of millisecond-level DVFS control.
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Figure 18. Comparative experiments on GPT-3 training.
In the second set of experiments, we generate policy with

different frequency adjustment interval (FAI in Fig. 18), i.e.
100 ms and 1 s, and merge frequency candidates shorter than
this granularity. When the frequency adjustment interval
is set to 100 ms, the generated policy triggers 38 SetFreq
commands per training iteration, resulting in a 1.74% perfor-
mance drop, along with a 3.60% reduction in SoC power and
a 9.30% reduction in AICore power. When the interval is set
to 1 s, only 4 SetFreq commands are triggered, leading to a
1.97% performance drop, a 3.48% SoC power reduction, and a
10.09% AICore power reduction. These results indicate that
with a larger frequency adjustment interval, fewer SetFreq
commands are triggered, causing many memory-bound and
compute-bound operators to run at the same frequency. This
not only misses many opportunities to reduce energy con-
sumption but also leads to greater performance degradation.

8 Discussion
In this section, we will discuss the advantages over model-
free approaches, limitation of NPU DVFS domain, general-
ization to other hardware, and model inference scenarios.

8.1 Advantages over model-free approaches
Our work builds performance and power models to guide
DVFS. Another potential approach is a model-free DVFS

method, which uses feedback from real systems rather than
model-predicted results for individual scoring in the genetic
algorithm. Our work adopts a modeling approach instead of a
model-free approach because employing performance/power
modeling enables us to rapidly assess policies. For instance,
with GPT-3, by incorporating performance and power model
within the genetic algorithm, we can evaluate a policy in just
milliseconds. Furthermore, we can utilize multi-processing
techniques to concurrently execute this process, allowing us
to assess 20,000 strategies within 5 minutes. If a purely ex-
perimental approach were used, each training round, which
takes 11 seconds, could only evaluate one policy. Within
the same timeframe, only 30 individuals could be assessed,
significantly slowing down the search process.

8.2 Limitation of NPU DVFS domain
We have currently implemented DVFS only on the AICore,
achieving around a 15% reduction in power consumption.
However, other uncore components on the SoC, such as
HBM and AICPU, lack frequency-tuning capabilities. De-
pending on the different AICore utilization rates of various
operators, the power consumption of these uncore compo-
nents can range from 10% to 90% of the SoC’s total power
consumption, averaging around 80%, which limits the over-
all power savings, which limits the overall power savings.
This limitation is also seen in other AI accelerators, like the
Nvidia A100, where DVFS is restricted to computing cores.
In the future, when hardware supports frequency tuning for
these uncore components, we will utilize these capabilities
to further enhance the benefits of frequency tuning.

8.3 Generalization to other hardware
This work consists of three parts: the performance model,
the power model, and the policy generation. We discuss the
generalization of each component separately.

Regarding the performancemodel, as described in Sect. 2.2,
our model is built upon an abstraction of the memory hier-
archy shown in Fig. 2, rather than the detailed hardware ar-
chitecture. Therefore, we believe the proposed performance
model can in principle be applied to hardware platforms that
share the same memory hierarchy, such as Nvidia GPUs [29]
and Google TPUs [17]. For example, similar abstraction has
been used in building the CRISP performance model for
GPUs [28]. We also analyze the performance data presented
in several GPU performance modeling works [2, 16, 46] and
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find that the relationship between cycles and frequency is
a convex function, which aligns with our analysis conclu-
sions. Thus, our analysis conclusions can also be applied in
those works to derive the performance models. On the other
hand, our performance model cannot currently generalize to
out-of-order accelerator, and Fig. 5, 6, 7 and 8 may not cover
more complex execution scenarios. Therefore, our model
may not be applicable to processors with more intricate exe-
cutionmechanisms, such as those featuring multiple in-flight
memory accesses and overlapping out-of-order speculative
execution characteristics, like CPUs.

As for power model, since it is not based on any hardware-
specific details but instead relies on a combination of physical
principles, we believe it represents a general technique that
can be easily applied to other hardware platforms.

As for policy generation, the classification in Sect. 6.1 and
preprocessing in Sect. 6.2 are tailored to our experimental
experience on the Ascend NPU platform and the CANN
Profiler output data, making this aspect specific to our hard-
ware. Generalizing it to other platforms requires adjusting
algorithm parameters based on profiling data collected from
operators running on the target hardware. Nonetheless, the
core concept—classifying memory-bound operators as LFC
and compute-bound operators as HFC—is broadly applica-
ble. Additionally, the use of a genetic algorithm for strategy
generation can serve as a reference for similar optimization
tasks on other hardware platforms.

8.4 Model inference scenarios
Optimizing energy efficiency for large model inference is
a critical issue [18, 35]. While our work focuses on model
training, it can theoretically extend to inference tasks as well.
Our preliminary experiment on the NPU based on llama2
inference codes from ModelLink2 shows that by lowering
the frequency of all operators to 1300 MHz, we can achieve
a 2.48% performance degradation in exchange for an 11.26%
reduction in SoC power consumption and a 25.06% reduction
in AICore power consumption. This significant reduction
in power consumption is a result of the host-bound nature
of model inference tasks on our device. In this scenario, the
CPU dispatches operators at a slower rate than the NPU can
execute them, causing the NPU to experience idle periods.
As a result, when we lower the NPU frequency, although
the operator execution time increases, this primarily fills the
existing NPU idle time. This allows us to reduce the NPU’s
frequency to 1300 MHz or even lower without significant
performance degradation. However, since efficient model
inference systems typically require complex scheduling de-
signs [31, 44], further research is needed to fully explore and
optimize DVFS for these systems.

2https://gitee.com/ascend/ModelLink

9 Related Work
Many studies have investigated performance modeling meth-
ods for AI accelerators, which can be broadly categorized into
analytical models [28, 40, 42] and statistical models [3, 8, 41,
43]. Statistical models leverage machine learning algorithms
to predict performance based on hardware counter metrics
collected from accelerators. Analytical models, on the other
hand, emphasize analyzing the operational mechanisms of
accelerators, estimating performance from perspectives like
instruction stalls, pipeline arrangements, and resource com-
petition. Our work concentrates on analyzing the impact
of DVFS on performance. By properly discussing multiple
important scenarios, our analytical model demonstrates that
the execution cycle count of operators is a convex piecewise
linear function of frequency, providing strong support for
our selection of fitting functions in performance modeling.
Power modeling methods for AI accelerators have also

been extensively studied [7, 11, 13, 19, 26, 34], including both
analytical models, and statistical models. Refs. [19, 26] pro-
vide a good summary of the impact of DVFS on chip power.
However, these studies typically do not consider the tem-
perature dependence of power. Our work enhances existing
DVFS-aware models by incorporating temperature effects.

Many studies have explored DVFS strategies on AI accel-
erators. These works mainly focus on NVIDIA GPU plat-
forms [2, 8, 12, 20, 39, 45, 47], or on AMD GPU platforms [2,
32]. Our work is the first to study the DVFS strategy on As-
cend NPU platforms. Moreover, while existing GPU DVFS
studies control DVFS at the granularity of program runtime
or sub-stages, our work investigates the frequency selection
at the operator level on AI accelerators.

10 Conclusion
In this work, we present our experience with end-to-end
energy optimization during model training. This includes
white-box timeline analysis of operator performance with
respect to frequency, consideration of temperature in power
modeling, and generating effective DVFS strategies based
on genetic algorithms. Experiments conducted on Ascend
NPU demonstrate that our approach achieves 13.44% power
reduction while maintaining performance degradation below
2%. Our methodology is not tied to specific hardware designs,
hence we believe that this work can be readily extended
to other types of accelerators, including GPUs, TPUs, and
others. We hope that sharing our experience can inspire
similar efforts and contribute to sustainable computation.
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