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Abstract—State-of-the-art inter-datacenter WANs rely on soft-
ware defined networking (SDN) to orchestrate their data trans-
mission. Optimization requires frequent network update op-
erations to switch forwarding tables. When scheduling inter-
datacenter WANs, the utility of services should be respected.
Yet, existing network update approaches do not respect network
utility and could result in performance degradation during the
network update procedure. Further, the update causes not only
performance degradation, but also the degradation period is
unnecessarily prolonged. In this paper we propose Hermes, a
utility-aware network update system. We aim to find a rate
limiting scheme for update which maximizes the sum of service
utility, while ensuring the congestion-free property during the
update. We propose an optimization framework for the maximum
utility network update problem (MUP). MUP is NP-hard and a
series of algorithms are developed to solve it. Extensive simulation
and testbed experiments with a prototype demonstrate that
Hermes can increase the total utility by 80% compared to state-
of-the-art. At the same time, it reduces the total update time and
control overhead by 40% and 55%, respectively.

I. INTRODUCTION

Motivation: State-of-the-art inter-datacenter WANs rely on

software defined networking (SDN) to orchestrate their data

transmission. For example, Google [1] and Microsoft [2] use

SDN to interconnect their geo-distributed datacenters. It is

well-known that an inter-datacenter WAN is a highly expensive

network infrastructure. Via centralized traffic engineering (TE)

every several minutes, the link utilization of a SDN-based

WAN can approach 100% [1], while traditional networks

have only 30% to 40% average utilization. Nevertheless, such

optimization requires frequent network update operations to

switch forwarding tables.

When scheduling inter-datacenter WANs, the utility of ser-

vices should be respected. For a specific service, a utility

function characterizes the relationship between the allocated

bandwidth and the quality-of-service [3]. It reflects the service-

level objective, e.g., minimizing the flow completion time,

minimizing the deadline missing ratio, etc. It enables network

operators to evaluate how bandwidth should be allocated to

increase the revenue. Initially, SWAN [2] and B4 [1] only use

the weighted max-min fairness principle to allocate bandwidth

among services. Calendaring [4] and Amoeba [5] then improve

performance for deadline-aware services by respecting their

objectives. Usually the service-level bandwidth resource is

divided equally among its flows especially for the video

streaming applications [6]. The service-level and flow-level

utility optimization are equivalent in inter-datacenter WANs

since the ingress switch aggregates the flows belong to the

same service [2].

Existing network update approaches [2], [7], [8], [9] do

not respect network utility and could result in performance

degradation during the network update procedure. Prior work

strives to find a congestion-free multi-stage update plan [7],

[2]. To guarantee a update plan always exists, a portion (10%–

50% [2]) of the network capacity has to be reserved. If

we simply decrease (e.g., proportionally) the allocated rate

for each flow, the sum of flow utility could be significantly

reduced. Furthermore, calculating a multi-stage update plan

requires solving a series of linear programming problems

(LPs), one for each stage. This procedure could be very

slow especially when the number of stages is large [10]. In

addition, for multi-stage update, the controller waits for all the

switches to complete their update operations before entering

into the next stage [11]. As a result, the update causes not only

performance degradation, but also a prolonged degradation

period. To the best of our knowledge, our work proposes the

first update approach that takes network utility into account.

Our contributions: In this paper we propose Hermes, a

utility-aware network update system. We aim to find a rate lim-

iting scheme for update which maximizes the sum of service

utilities, while ensuring the congestion-free property during the

update procedure. When update is done, all services resume

to its original rate. Compared with multi-stage update [2],

[7], our approach only requires one update stage and can

significantly speed up the update procedure. In addition, we

save the computation overhead of solving a series of LPs.

Furthermore, we do not need any bandwidth headroom and

the network still runs at near full utilization.

Our first contribution is that we propose an optimization

framework for the maximum utility network update prob-

lem (MUP). Generally speaking, given service-level utility

functions, the optimization program aims to determine the

reduced rate for each service before update, such that the

congestion-free condition is ensured during the asynchronous

update (Sec. III).

231

2018 IEEE 26th International Conference on Network Protocols

978-1-5386-6043-0/18/$31.00 ©2018 IEEE
DOI 10.1109/ICNP.2018.00032



Our second contribution is that we develop a series of

algorithms to solve MUP. We prove that MUP is NP-hard. We

first propose an iterative improvement algorithm to calculate

the reduced rate for each service. By using convex relaxation

techniques, we next determine a concave envelop for each

non-concave utility function and obtain an initial solution

using multi-block ADMM techniques. Further we adjust the

allocated rate which improves upon the initial solution by

greedily increasing the total utility in the network (Sec. IV).

Our third contribution is a concrete implementation and

evaluation of Hermes. We develop a prototype of Hermes us-

ing Linux tc to dynamically adjust the allocated rate and

evaluate it on a small-scale testbed. We use OFSoftSwitch

and Dpctl [12] as Openflow switches and the controller.

Extensive simulation and testbed experiments demonstrate that

Hermes can increase the total utility by 80% compared to state-

of-the-art. At the same time, it reduces the total update time

and control overhead by 40% and 55%, respectively (Sec. V).

II. BACKGROUND AND MOTIVATION

A. Related work

Network utility maximization: There is a rich literature on

network utilization maximization (NUM). Dolev et al. [13] use

Newton-method-based update steps to speed up the algorithm

convergence procedure for solving NUM. Later, Wei et al. [14]

take advantage of matrix splitting techniques to further im-

prove the converging time, where the proposed approaches can

be computed in a decentralized manner. From the optimization

perspective, NUM is used to analyze existing TCP protocol-

s [15] by specifying some special utility functions. Recently

NUM is widely used in cloud data centers, pFabric [16] aims

to minimize the flow completion time and can provide near

optimal rate control schemes. Centralized Fastpass [17] relies

on fine-grained packet scheduling to flexibly allocate network

resource. NUMFabric [3] considers per-flow bandwidth allo-

cation and optimization, where the allocation policy can be

well captured by a NUM problem.

Network update in SDNs: SWAN [2] and zUpdate [7]

try to find congestion-free update plans in inter-datacenter and

intra-datacenter, respectively. SWAN shows that if each link

has certain slack capacity, there always exists a congestion-

free update sequence. As the update speed of the dynamic

scheduling is different, Dionysus [8] employs dependency

graphs to determine a congestion-free update plan according

to different runtime conditions of switches. To reduce the

dependency complexity, Cupid [9] divides the global update

dependencies among switches into local restrictions to avoid

high overhead when generating a update plan. Ludwig et

al. [18] aim to minimizing the number of sequential controller

interactions when transitioning from the initial to the final

update stage. The authors prove that finding a shortest node

ordering sequence that avoids forwarding loops is NP-hard.

Another work by Ludwig et al. [19] considers secure network

updates in the presence of middleboxes such as firewalls and

NAT. Instead of congestion-free update, Zheng et al. [10]

advocate to find an update plan that minimizes the transient

FA 1.0 Unit FB 1.0 Unit 1.0 Unit

R1 R2

R3R4

FBFA

R1 R2

R3R4
FB

FA

R1 R2

R3R4

FA
FB

R1 R2

R3R4

0.5 FB

0.5 FA

R1 R2

R3R4

FB

FA

R1 R2

R3R4

0.7 FB

0.3 FA

Fig. 1. A motivating example.

congestion, while it cannot be applied to bandwidth-sensitive

data transfers.

Though the idea of NUM and network update have surfaced

in the literature, the novelty of our work lies in a compre-

hensive exploration of integrating NUM into network update,

which to our knowledge has not been done before.

B. Utility function

The traffic on the WAN is a mix of the diverse services [2],

[20]. Fig. 2 illustrates the utility functions for four typical

services [21]: elastic service, hard real-time service, delay-

adaptive service and rate-adaptive service. An example of

elastic service is the data backup operation, which periodically

transfers the data from one data center to another data center.

The delivery usually does not have hard deadline and can

tolerate the network delay [22]. The hard real-time services

such as the web search, online chatting and gaming are

triggered by the the end users. Taking web search for example,

one user searched something in the internet and the user

requests were routed to the closed data center. When the search

results were finished, the search engine wanted to rank the

pages based on user’s preference (e.g. from user’s past social

behaviors). Unluckily, the user’s preference was located in

another data center. At this point, the data center which is

processing the user requests need to communicate with the

data center which stores the user data. Reducing the allocated

bandwidth for this kind of service could result in significant

performance degradation. Other applications such as the audio

and video delivery, which can tolerate a small extend of packet

loss and delay variations, provide the delay-adaptive and rate-

adaptive services.

We wish to find a rate-limiting scheme before update which

maximizes the total utility, while ensuring congestion-freedom

during asynchronous update. Each flow is associated with a

utility function that captures how the utility varies with the

allocated bandwidth. This can be naturally formulated by an

optimization program. Moreover, the problem of finding an

update plan that maximizes the total utility is more general

than the prior work [7], [2], [8]. Existing work can be viewed

as a special case that each utility function is identical.
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(a) Utility function of flows for a
elastic service. The utility begins to
decrease when the allocated rate is
less than 100 Mbps.
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(b) Utility function of flows for a
hard real-time service. The utility
drops to zero when the allocated rate
is less than 50 Mbps.
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(c) Utility function of flows for a
delay-adaptive service. The utility
begins to decrease when the allocat-
ed rate is less than 100 Mbps.
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(d) Utility function of flows for a
rate-adaptive service. The utility be-
gins to decrease when the allocated
rate is less than 100 Mbps.

Fig. 2. Utility functions for four typical services.
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(a) Normalized utility for flow A
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(b) Normalized utility for flow B

Fig. 3. The different utility functions of flows for two hard real-time services
shown in Fig. 1.

C. A Motivating Example

In a software defined data center network, whenever the

topology or traffic matrix changes, the controller needs to

recalculate routing in order to optimize performance. Consider

the example in Fig. 1, in which there are four switches

R1, . . . , R4, and the link capacity is one unit. FA and FB are

two flows from R1 to R3 and R4 to R3, respectively, whose

demand are both one unit. The initial routing is illustrated in

Fig. 1(a). At this point, suppose a new flow appears from R4

to R2 with a demand of one unit. The controller then wants to

change routing to Fig. 1(b). Due to the different update order,

the two flows may be routed temporarily as in Fig. 1(c) (or

Fig. 1(d)) during the transition. In this case congestion occurs

at the link from R4 to R3 (or the link from R2 to R3), which is

overloaded with twice its capacity, and results in severe packet

loss.

Reducing the flow rate before update can avoid transient

congestion [8] during the asynchronous update. If each flow

halves its original rate as shown in Fig. 1(e), the demand

of each flow becomes 0.5 unit. The maximum link load in

state (c) or (d) is only one unit, which cannot beyond the link

capacity, and the whole process is congestion-free. However,

the utility of rate-reduced flows is ignored and may result in

poor performance especially for the hard real-time services.

We assume the utility functions of two flows are illustrated as

in the Fig. 3(a) and Fig. 3(b), which mathematically formulates

the relation between utility and the allocated flow rate. If we

simply halve the rate of each flow to avoid the transient con-

gestion during update, the total utility is fA(0.5)+ fB(0.5) =
1.0 + 0 = 1.0. Note that if we reduce the rate of flow A and

flow B to 0.3 and 0.7, respectively, as shown in Fig. 1(f),

the total utility is fA(0.3) + fB(0.7) = 1.0 + 1.0 = 2.0,

which increases the utility by 100% and the whole process is

congestion-free as well.

III. AN OPTIMIZATION FRAMEWORK

A. Network Model

TABLE I
KEY NOTATIONS IN THIS PAPER.

Input Fl The set of flows for the elastic services
Fh The set of flows for the hard real-time services
Fd The set of flows for the delay-adaptive services
Fr The set of flows for the rate-adaptive services
F The set of all flows i. F = Fl ∪ Fh ∪ Fd ∪ Fr

V The set of switches v
E The set of links e
G The directed network graph G = (V,E)
Ce The capacity of link e
P (i) The set of initial and final path for flow i
di The demand of flow i
li(·) The utility function of flows for the elastic

services
hi(·) The utility function of flows for the hard real-

time services
gi(·) The utility function of flows for the delay-

adaptive services
fi(·) The utility function of flows for the rate-adaptive

services

ĥi(·) The concave envelop of the function hi(·)
ĝi(·) The concave envelop of the function gi(·)
f̂i(·) The concave envelop of the function fi(·)
y1i,p The indicator variable of initial route that equals

1 if flow i uses path p and 0 otherwise
y2i,p The indicator variable of final route that equals

1 if flow i uses path p and 0 otherwise
Output xi The allocated rate (bandwidth) for flow i

Before presenting the problem definitions, we first discuss

our network model. A network is a directed graph G = (V,E),
where V is the set of switches and E the set of links with

capacities Ce for each link e ∈ E. F represents the set

of flows in the network and each flow i ∈ F is associated

with a demand di. The set of flows F includes four types of

flows Fl, Fh, Fd and Fr, and corresponding utility function

is li(·), hi(·), gi(·) and fi(·), respectively. Each flow i is

routed through a initial path, and will be moved to a final

path. The initial and final routing configurations for flow i are

denoted by y1i,p and y2i,p. Before update, we calculate the rate

xi for each flow i, aiming to maximize the sum of utility,
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such that the congestion-free condition is ensured during the

asynchronous network update. It should be noted that the flow

in our model is in fact an aggregate of all flows belong to the

same service between the ingress-egress switch pair. This does

not lose generality of the model, and is in line with previous

work such as SWAN [2] and B4 [1]. For convenience, we

summarize important notations in Table I.

B. Problem Formulation

Based on the above network model, we formulate maximiz-

ing utility network update problem (MUP) as an optimization

program (1). Given the initial routing configuration {y1i,p} and

final routing configuration {y2i,p}, we wish to find an optimal

rate-limiting scheme before update which maximizes the total

utility, while ensuring congestion-freedom condition during

update.

maximize
∑
i∈Fl

li(xi) +
∑
i∈Fh

hi(xi) +
∑
i∈Fd

gi(xi) +
∑
i∈Fr

fi(xi)

(1)

subject to
∑
i∈F

xi

∑
p∈P (i):e∈p

max(y1i,p, y
2
i,p) ≤ Ce,

∀e ∈ E, (1a)

0 ≤ xi ≤ di, ∀i ∈ F. (1b)

The objective of program (1) is to maximize the sum of

utility for each flow i. The optimization variables xi indicate

the allocated bandwidth for flow i before update. Constraint

(1a) characterizes transient congestion for individual links

e during transition. For example, as illustrated in Fig. 1,

during the transition from Fig. 1(a) to Fig. 1(b), i.e., from

initial route to final route, the maximum load on the link

〈R4, R3〉 is xfA ×max(1, 0)+xfB ×max(0, 1) = xfA +xfB ,

which describes the case shown in Fig. 1(c). Similarly, the

maximum load on the link 〈R2, R3〉 is xfA × max(0, 1) +
xfB×max(1, 0) = xfA+xfB , which describes the case shown

in Fig. 1(d). Constraint (1b) is the flow demand conservation

constraint, which represents the reduced rate xi cannot beyond

the original flow demand di. Here we slightly abuse the

notation and use the same index variable i to refer to the

set of flows F and each type of flows Fl, Fh, Fd and Fr for

convenience. The meaning of i is clear given the context in

the formulation.

C. Complexity Analysis

We first establish the hardness of our problem MUP below.

Theorem III.1. MUP is NP-hard, even for a network consist-
ing of two switches and two parallel links.

Proof. Here we only give an intuition. Consider a special case

of MUP as shown in Fig. 4. The capacity of link e0 and e1 is

C. There are n
2 flows initially routed from link e0, and will be

moved into their final link e1. The flow demand and the utility

function is di and hi(·) respectively, where
∑

i di = C, hi(·)
represents the utility function of flows for the hard real-time

services, i ∈ {1, 2, · · · , n/2}. Similarly, there are n
2 flows

initially routed from link e1, and will be moved into their

final link e0. The flow demand and the utility function is di
and hi(·) as well, where i ∈ {n/2 + 1, n/2 + 2, · · · , n}. The

utility function of each hard real-time flow i in our instance

has one critical point ri and is defined as follows.

hi(xi) =

{
1 xi > ri

0 0 ≤ xi ≤ ri

where ri + ε = di, i ∈ {1, 2, · · · , n}, ε is an arbitrary small

number. The function hi(·) indicates that the utility for flow

i drops to zero if we reduce the flow rate (we assume that

the reduced flow rate is larger than ε). Otherwise, the utility

is one.

We construct a polynomial reduction from the set partition

problem [23] to it. Consider a partition instance consisting of

n items, each with a value ai. Each item i corresponds to one

of the flows in the example of Fig. 4, where ai = di, i ∈
{1, 2, · · · , n}. Therefore, any feasible partition of the items

corresponds to the set of flows with and without rate reduction,

and vice versa. The set of rate-reduced flows forms one set

of the partition, and that keeping the original rate forms the

other.

s t

e1

e0

n/2

1

2

n/2

1

2

Fig. 4. Reduction from Partition to MUP.

Now we analyze the complexity of program (1). Although

the max function is used in constraint (1a), this is still linear

since y1i,p and y2i,p are both known constant. The constraint (1a)

and (1b) with |E|+ |F | linear constraints construct a convex

polytope. The function li(·) is concave, while the functions

hi(·), gi(·) and fi(·) are non-concave as there exist two critical

points xi,1 and xi,2 in the x-axis such that for ∀α ∈ (0, 1),
the following condition holds [24],

Ai(α ·xi,0 +(1−α) ·xi,1) < α ·Ai(xi,0)+ (1−α) ·Ai(xi,1)

where Ai represents the set of functions, Ai ∈
{hi(·), gi(·), fi(·)}. Hence, the sum of the objective function

is non-concave as well and we have the theorem below.

Theorem III.2. The program (1) is non-concave.

IV. ALGORITHMS

In this section we develop a set of algorithms to tackle

MUP. We first propose an iterative improvement algorithm

to calculate the reduced flow rate before update. However,

the performance of this approach heavily relies on the input
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step length. In addition, we use convex relaxation techniques

to determine a concave envelop for each non-concave utility

function and obtain an initial solution using standard methods

for nonlinear convex optimization. Further we adjust the

allocated rate which improves upon the initial solution by

greedily increasing the total utility in the network.

A. An iterative improvement algorithm

The main intuition of our iterative improvement algorithm

is explained as follows. At the beginning, each flow’s rate is its

original rate di. In order to avoid transient congestion during

update, we first reduce the rate of flows passing through the

most congested links. We iteratively decrease the flow rate

with the least utility reduction relative to an input parameter

Δ, until all the links are congestion-free.

Algorithm 1: Iterative improvement

Input: The directed acyclic network G; the initial route y1
i,p and

the final route y2
i,p for each flow i ∈ F ; the utility functions

li(·), hi(·), gi(·) and fi(·) for the elastic service, the hard
real-time service, delay-adaptive service and rate-adaptive
service; the step length Δ.

Output: The allocated rate {xi}.
1: Le =

∑
i∈F di

∑
p∈P (i):e∈p max(y1

i,p, y
2
i,p), ∀e ∈ E

2: δe = Le − Ce, ∀e ∈ E
3: xi = di, ∀i ∈ F
4: while there exists a link e such that δe > 0 do
5: e∗ = argmaxe∈E δe
6: δ = δe∗
7: Construct the flow set F ∗ that is routed through link e∗

8: while δ > 0 do
9: i′ = argmini∈F∗

Ai(xi)−Ai(xi−Δ)
Δ

, where
Ai ∈ {li(·), hi(·), gi(·), fi(·)}

10: xi′ = xi′ −min(δ,Δ)
11: δ = δ −min(δ,Δ)
12: Update Le and δe

The procedure of determining the rate of each flow is shown

in Algorithm 1. We first calculate the possible maximum link

load Le during asynchronous update (line 1). Let δe be the

difference between the link load Le and link capacity Ce

(line 2). The inequation δe > 0 indicates that the congestion

happens as the link load is beyond its link capacity. We

iteratively reduce the flow rate in the most congested links

e∗ until the condition δe ≤ 0 is satisfied (lines 4-12). In

each iteration, we firstly calculate δe for each link in order to

determine the most congested link e∗. And then we construct

the set of flows F ∗ in which the flows are routed through

the link e∗ (lines 5-7). We calculate the variation of utility

function relative to Δ and pick flow i′ with the least utility

reduction (line 9). Accordingly we decrease the rate of flow

i′ by Δ and the parameter Δ should be subtracted from δ as

well (lines 10-11). The min(δ,Δ) used here is to ensure that

δ cannot be less than zero after rate reduction. Once δ equals

zero, we update Le and δe and the algorithm enters into the

next loop (line 12).

B. A rate adjustment algorithm

As the iterative improvement algorithm relies on the input

step length Δ, we focus on using convex relaxation techniques

to tackle our problem. We explain the high level working

of our idea. Since the utility function in the objective is

separable, we can replace each non-concave function with

a concave function and then solve this new program using

standard methods for nonlinear convex optimization. Based

on this initial solution, we first reduce the rate for hard real-

time services as its utility keeps unchanged once the allocated

rate is beyond a critical point ri. Next we increase the rate

for the flows with maximum utility increment and the least

bandwidth consumption. Finally we update the initial solution

and complete the rate adjustment procedure.

Before illustrating our rate adjustment algorithm, we first

introduce the related definition first.

Definition IV.1. Concave envelop [24]: For each utility
function Ai(xi), the concave envelop Âi(·) is a concave
function defined as following.

Âi(·) = inf {Bi(·)|Bi(·) is concave and Bi(xi) ≥ Ai(xi)}
where Ai(·) ∈ {hi(·), gi(·), fi(·)} in our problem.

As the functions hi(xi), gi(xi) and fi(xi) in the objective

are non-concave, we plan to relax the program (2) by replacing

hi(xi), gi(xi) and fi(xi) with their concave envelops ĥi(xi),
ĝi(xi) and f̂i(xi). Note that calculating the concave envelop

for arbitrary functions could be hard. Here we only consider

the special case that is hard real-time service, delay-adaptive

and rate-adaptive service respectively, whose concave envelops

are shown in Fig. 5. When the concave envelop for each

non-concave function is determined, the program (2) can be

reformulated as the following program by convex relaxation

techniques.

maximize
∑
i∈Fl

li(xi) +
∑
i∈Fh

ĥi(xi) +
∑
i∈Fd

ĝi(xi) +
∑
i∈Fr

f̂i(xi)

(2)

subject to (1a), (1b).

Let L (x, λ, u, w) be the Lagrangian of program (2) with

dual variables λ, u and w.

L (x, λ, u, w) =
∑
i∈Fl

li(xi) +
∑
i∈Fh

ĥi(xi) +
∑
i∈Fd

ĝi(xi)

+
∑
i∈Fr

f̂i(xi) + λT

⎛
⎝Ce −

∑
i∈F

xi

∑
p∈P (i):e∈p

max(y1i,p, y
2
i,p)

⎞
⎠

+ uT · (di − xi) + wT · xi

The Lagrange dual program of primal program (2) is defined

as the following.

minimize sup
x

L (x, λ, u, w) (3)

subject to λ ≥ 0, u ≥ 0, w ≥ 0. (3a)
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(a) The concave envelop of utility
function for the elastic service.
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(b) The concave envelop of utility
function for the hard real-time ser-
vice.
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(c) The concave envelop of utility
function for the delay-adaptive ser-
vice.
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(d) The concave envelop of utility
function for the rate-adaptive ser-
vice.

Fig. 5. The concave envelops (colored green) of utility functions for four typical services.

From the Theorem 2 in [25], we can derive that Corol-

lary IV.1 can be established, which indicates the solution of

the concave relaxation program (2) is bounded by the results

below.

Corollary IV.1. Let w ∈ R|F | be a random variable with
uniform distribution on the unit sphere. We construct the
following auxiliary optimization program,

minimize wT · x (4)

subject to (1a),∑
i∈Fh

(
ĥi(xi)− ĥi(x

∗
i )
)
+

∑
i∈Fd

(ĝi(xi)− ĝi(x
∗
i ))

+
∑
i∈Fr

(
f̂i(xi)− f̂i(x

∗
i )
)

≥

λ∗T

⎛
⎝∑

i∈F

(−xi + x∗
i )

∑
p∈P (i):e∈p

max(y1i,p, y
2
i,p)

⎞
⎠

+ u∗T · (−xi + x∗
i ) + w∗T · (xi − x∗

i ). (4a)

We assume (x∗, λ∗, u∗, w∗) is an optimal primal-dual tuple of
program (2) and (3). Then with probability 1, R has a unique
solution x̃ that satisfies the following condition.

OPT −
(∑

i∈Fl

li(x̃i) +
∑
i∈Fh

ĥi(x̃i) +
∑
i∈Fd

ĝi(x̃i) +
∑
i∈Fr

f̂i(x̃i)

)

≤
min{|F |,|E|+|F |}∑

i=1

ρi

where OPT represents the optimal solution of program (1)

and the definition of ρi is as following.

Definition IV.2. Nonconcavity of a function [25]: We define
the nonconcavity ρi as the equation below.

ρi = sup
xi

{Âi(·)−Ai(·)}

where ρ1 ≥ ρ2 ≥ · · · ≥ ρmin{|F |,|E|+|F |}.

Based on the above discussion, we propose our rate ad-

justment algorithm. The complete procedure is shown in

Algorithm 3. By determining the concave envelop for each

non-concave function, we first obtain the initial solution {xi}
using standard methods for nonlinear convex optimization.

However, solving this program is time-consuming especially

in large-scale production networks with thousands of switches

and flows. Thus we set out to design a parallel algorithm to

solve this program instead.

Algorithm 2: A Proximal Jacobian ADMM Algorithm

Input: The directed acyclic network G; the initial route y1
i,p and

the final route y2
i,p for each flow i ∈ F ; the utility functions

and its concave envelops li(·), ĥi(·), ĝi(·) and f̂i(·) for the
elastic service, the hard real-time service, delay-adaptive
service and rate-adaptive service.

Output: A solution {xi}.
1: Transform the program (2) to program (5).
2: Initialize the variables δ, γ, x and multipliers θ, ϕ to zero.
3: for t = 1, 2, · · · do
4: Update δ, γ, x from programs (6), (7), (8) in parallel.
5: Update θ, ϕ from equations (9), (10).

Inspired by the framework of multiple-block ADMM [26],

we develop a proximal Jacobian ADMM algorithm that can

converge to an optimal solution at the rate of o( 1t ) in Al-

gorithm 2, where t is the number of iteration times. As

the constraints in program (2) are inequalities, we require to

transform program (2) to program (5) in order to apply 3-

block ADMM (line 1). Furthermore, we initialize the variables

δ, γ x, and multipliers θ, ϕ to zero (line 2) and solve each

subprogram in parallel (lines 3-5).

Now we explain the detailed transformation procedure. For

convenience, we denote Δ and Φ as following.

Δ =
∑

p∈P (i):e∈p

max(y1i,p, y
2
i,p)

Φ =
∑
i∈Fl

li(xi) +
∑
i∈Fh

ĥi(xi) +
∑
i∈Fd

ĝi(xi) +
∑
i∈Fr

f̂i(xi)

We reformulate the program (2) in order to apply ADMM.

We first introduce slack variables δe and γi to transform the

inequality constraints (1a) and (1b) to equality constraints

(5a) and (5b) required by ADMM. Second, all variables in

the constraints are separable for each group and comply

with the condition of ADMM. Towards this end, we add the

original constraint xi ≥ 0 and reformulate the program (2) to

program (5) as follows.
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maximize Φ (5)

subject to Ce −
∑
i∈F

xi ·Δ− δe = 0, ∀e ∈ E, (5a)

di − xi − γi = 0, ∀i ∈ F, (5b)

xi ≥ 0, ∀i ∈ F. (5c)

Let Lρ be the augmented Lagrangian of program (5) with

dual variables θ and ϕ. i.e., introducing an extra L -2 norm

term into the objective:

Lρ = Φ+
∑
e∈E

θe

(
Ce −

∑
i∈F

xi ·Δ− δe

)
+
∑
i∈F

ϕi(di − xi − γi)

+
ρ

2

∑
e∈E

(
Ce −

∑
i∈F

xi ·Δ− δe

)2

+
ρ

2

∑
i∈F

(
di − xi − γi

)2

where ρ > 0 is the penalty parameter. The reason that we

introduce the penalty term is to speed up the convergence

rate [27].

Distributed 3-block ADMM. We initialize the variables δ,

γ, x and multipliers θ, ϕ to zero. For t = 1, 2, · · · , repeat

the following steps.

1. δ-update. Each link e solves the following subproblem

for obtaining δt+1
e :

maximize θte · δe +
ρ

2

(
Ce −

∑
i∈F

xt
i ·Δ− δe

)2

+
w

2

(
δe − δte

)2

(6)

subject to δe ≥ 0, ∀e ∈ E. (6a)

This per-link subproblem is a small-scale quadratic program

and can be solved efficiently.

2. γ-update. Each flow i solves the following subproblem

for obtaining γt+1
i :

maximize ϕt
i · γi +

ρ

2

(
di − xt

i − γi
)2

+
w

2

(
γi − γt

i

)2

(7)

subject to γi ≥ 0, ∀i ∈ F. (7a)

This per-flow subproblem can be solved by the standard

solvers for quadratic program.

3. x-update. Each flow i solves the following subproblem

for obtaining xt+1
i :

maximize Φ−
∑
e∈E

θte · xi ·Δ+
ρ

2

(
di − xi − γt

i

)2

− ϕt
i · xi +

ρ

2

∑
e∈E

(
Ce −

∑
i∈F

xi ·Δ− δte

)2

+
w

2

(
xi − xt

i

)2

(8)

subject to xi ≥ 0, ∀i ∈ F. (8a)

4. Dual updates. Each link e updates θ for the constrain-

t (5a):

θt+1
e = θte + ι · ρ ·

(
Ce −

∑
i∈F

xt+1
i ·Δ− δt+1

e

)
(9)

Each flow i updates ϕ for the constraint (5b):

ϕt+1
i = ϕt

i + ι · ρ · (di − xt+1
i − γt+1

i

)
(10)

where ι · ρ is the step size for the dual update.

Algorithm 3: Rate adjustment

Input: The directed acyclic network G; the initial route y1
i,p and

the final route y2
i,p for each flow i ∈ F ; the utility functions

li(·), hi(·), gi(·) and fi(·) for the elastic service, the hard
real-time service, delay-adaptive service and rate-adaptive
service.

Output: The allocated rate {x̂i}.
1: for each i ∈ F \ Fl do
2: Determining the concave envelop ĥi(·), ĝi(·) or f̂i(·)

according to Definition IV.1
3: Obtain {xi} using Algorithm 2.
4: for each i ∈ Fh do
5: if li(xi) = 1 then
6: xi = ri + ε
7: x̂i = xi

8: for each i ∈ F do
9: if the rate of the flow i can be increased at most ξi without

link capacity violation then
10: F ∗ = F ∗ ∪ {i}
11: while F ∗ �= ∅ do
12: i′ = argmaxi∈F∗

Ai(xi+ξ)−Ai(xi)
ξi

, where

Ai ∈ {li(·), hi(·), gi(·), fi(·)}
13: x̂i′ = xi′ + ξi′
14: Re-construct the flow set F ∗

Note that Algorithm 2 can converge to an optimal solution

at the rate of o( 1t ), which can significantly speed up the

calculation procedure. After obtaining the solution {xi} using

Algorithm 2, we adjust the rate of each flow which improves

upon the initial solution by greedily increasing the total utility

(lines 4-13). Specifically, for each hard real-time flows i, we

determine the critical point ri of its utility function, where

x̂i = ri + ε, which indicates that the rate of flow i can be

decreased by xi − x̂i without utility reduction (lines 5-7).

After that, we construct the flow set F ∗ in which the rate of

each flow i can be independently increased at most ξi without

the capacity violation (lines 8-10). Next we pick the flow i′

with the maximum utility increment relative to ξi (lines 12).

Accordingly, we increase the flow rate by ξi′ and re-construct

the flow set F ∗ (lines 13-14). Note that the initial solution

is bounded by the results from Corollary IV.1. Algorithm 3

improves upon the initial solution whenever possible, and thus

its performance is at least as good as that of initial solution.

V. EXPERIMENTAL EVALUATION

We evaluate our algorithms using both prototype implemen-

tation and large-scale simulation.

Benchmark Schemes: We compare the following schemes

with our algorithms.
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TABLE II
THE USED UTILITY FUNCTIONS IN OUR EVALUATION.

Service type Utility function Parameter settings

The elastic service li(xi) =
2

1+e−θ·(xi−β) − 1 θ ∈ [0.1, 0.2], β ∈ [−10, 0]

The hard real-time service hi(xi) =

{
1 ri < xi ≤ 100

0 0 ≤ xi ≤ ri
ri ∈ (0, 100)

The delay-adaptive service gi(xi) =
1

1+e−θ·(xi−β) θ ∈ [0.1, 0.5], β ∈ [40, 60]

The rate-adaptive service fi(xi) =

{ 1

1+e−θ·(xi−β) 0 ≤ xi ≤ ri
1

1+e−θ·(xi−β) + log10(
xi
ri

) ri < xi ≤ 100
θ ∈ [0.2, 0.4], β = ri − 10, ri ∈ [20, 80]

• One Shot: Each flow’s rate is evenly decreased on the

congested links during the transition directly from the

initial to the final routing configurations.

• I2: Our heuristic iterative improvement algorithm shown

in Algorithm 1. Unless stated otherwise, we configure the

parameter Δ to 1.0 in Algorithm 1.

• SWAN: State-of-the-art update algorithm [2]. As dis-

cussed in Sec. I, this algorithm cannot take utility into

consideration, and we only include it for comparing the

control overhead and update time. We leave 10% link

capacity vacant to guarantee the congestion-free update

plan always exists.

• Hermes: Our rate adjustment algorithm shown in Al-

gorithm 3. Unless stated otherwise, we configure the

parameter ε to 1.0 in Algorithm 3.

The traffic used in our evaluation is generated in [28], and

we change the flow demand to simulate traffic variations. Each

flow is associated with a utility function shown in Tab. II

Given the demand, we calculate the initial and final routing

to maximize the network utility. Unless stated otherwise, we

configure ρ, w and ι to be 0.1, 0.02 and 1.0 respectively in

Algorithm 2 as suggested in [26].

v2

v1 v5

v3 v4

Fig. 6. Network topology used in our testbed.

A. Implementation and Testbed Emulations

Implementation: We develop a prototype of our algorithms

using OFSoftSwitch and Dpctl [12] as Openflow switches

and the controller. Now we describe how to perform network

update in Hermes. As illustrated in Fig. 7, the initial time is

t0. We first obtain a solution to MUP using Algorithm 3 at

t1 (the time for generating update plan is t1 − t0). Based on

this solution, the controller generates a specific rate-limiting

policy for each host. The hosts configure Linux tc class and

filter property to reduce the sending rate once they receive

their own rate-limiting policy from the controller. When the

flow rate is successfully reduced at t2, we start to update the

forwarding rules (the rate-limiting time is t2 − t1). Hermes

relies on two-phase update protocols [29] to perform network

update. We use VLAN ID in packet headers to index stages.

In the first phase, new rules—whose matching fields use the

new VLAN ID that corresponds to the second stage—are

added. During this phase, flows are still forwarded according

to existing rules as packets are still stamped with the VLAN
ID of the first stage. Once the update is done for all switches,

the protocol enters the second phase, when we stamp every

incoming packet with the new VLAN ID. At this point the

new rules become functional, and old rules are removed by

the controller (the update time is t3 − t2).

Fig. 7. The whole network update procedure in Hermes.

For completeness we now explain the implementation of

SWAN now. SWAN solves a series of LPs to find a congestion-

free multi-stage update plan. The update plan consists of

discrete stages, each of which moves a portion of flows to

a temporary path to avoid transient congestion. At each stage,

SWAN requires to re-configure the splitting weights at ingress

switch based on the calculation results of LP. Accordingly,

the packets at ingress switch are splitted to a set of pre-

defined output ports proportional to the corresponding weights.

We use Openflow group table with select type [30] to

implement this function. The Openflow messages used in our

experiments are shown in Table III.

TABLE III
OPENFLOW MESSAGES USED IN OUR EXPERIMENTS.

Openflow message Type
OFPT_FLOW_MOD Controller-to-Switch
OFPT_GROUP_MOD Controller-to-Switch

OFPT_BUNDLE_CONTROL Controller-to-Switch
OFPT_PACKET_IN Asynchronous
OFPT_PACKET_OUT Asynchronous

Setup: Our experiments are performed over 5-server

testbed, equipped with two intel E5-2650 CPUs with 12

cores and 64 GB memory. Each server runs a software-based

Openflow switch [12]. We adopt a small scale topology with

5 switches and 7 1Gbps links as illustrated in Fig. 6. We
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(a) Hermes (b) SWAN

Fig. 8. The total time in our testbed experiments.
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(a) The number of utility functions
for each type is identical.
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(b) The number of utility functions
for each type is random.

Fig. 9. Utility variation with different numbers of flows.

use pktgen to generate different numbers of UDP flows in

each run. The aggregate flow rate is 1 Gbps in each port. The

forwarding rules are installed and updated via Dpctl API [12].

We use IP_PROTO, UDP_SRC, UDP_DST and VLAN_ID as

the matching field to perform routing forwarding. Note that

we should set IP_PROTO field to be 17 in order to match

UDP packets.

Experiment Results: Fig. 8 shows the total time results for

Hermes and SWAN. In this set of experiments, we vary the

number of flows from 20 to 120 at the increment of 20. We

perform the same experiment with ten runs for both Hermes

and SWAN, and report the average values. We evaluate the

total time T . It includes three parts: time for generating update

plan Tg (running time of algorithm), time for rate limiting Tr

and time for updating the forwarding rules Tu.

T = Tg + Tr + Tu

Above of all, we discuss the first part Tg . SWAN introduces

around 2∼4 intermediate stages in our experiments and the

total running time is the sum of the running time solving

each LP for each stage. We can observe that the running

time for SWAN increases more significantly. The difference

between Hermes and SWAN is minimum when the number of

flows is 20, while the difference between them is maximum

when the number of flows is 120. On average, Hermes can

reduce the running time by 60% compared with SWAN. The

second part Tr is the time for reducing the flow rate. The

rate-limiting time for SWAN is zero in our setting as we

leave 10% link capacity vacant in advance to guarantee its

congestion-free update plan always exists. The rate-limiting

time for Hermes is 0.2s and 1.3s when the number of flows is

20 and 120 respectively. Finally, we measure the update time

Tu. As Openflow barrier feature cannot provide accurate

acknowledgments [31] to indicate the completion of update

operation, we use tcpdump—a powerful packet analyzer—to

confirm when the new rules take effect. Looking more closely

into Fig. 8(a) and Fig. 8(b), the improvement for Hermes is

more obvious: it decreases the time for updating forwarding

rules by 35% from SWAN. This demonstrates that Hermes

in general leads to less update time as it does not require

additional update operations involved in multi-stage update

schemes. In summary, Hermes can reduce the total time T by

55% compared with SWAN on average. Meanwhile, during

the experiments, we found that the time for generating update

plan Tg account for around 95% of the total time T . The time

for updating forwarding rules Tu just account for around 5%.

B. Simulation

We also conduct extensive simulations to thoroughly eval-

uate our algorithms at scale.

Setup. In addition to the small-scale topology used in our

testbed, here we use a large-scale synthetic scale-free topology

that is randomly produced by the scale_free_graph
function [32]. There are 100 switches and 586 10 Gbps links in

total. We generate different numbers of flows for each source-

destination switch pair in each run. The utility functions for

four typical services are chosen from Tab. II. We run our

algorithms on a server with Intel(R) Xeon(R) CPU E5-2650

and 64 GB memory. Each data point is an average of ten runs.

We first investigate the utility variations with different num-

bers of flows. We set the link capacity to be 6 Gbps and vary

the number of flows from 1000 to 5000 at the increment of

500. We can see that, as the number of flows increases, Hermes

significantly increases more utility compared to I2 and One

Shot. Specifically, in Fig. 9(b), the total utility for Hermes, I2

and One Shot is 3341, 2258 and 1944, respectively, when the

number of flows is 3000. Looking more closely into Fig. 9(a)

and Fig. 9(b), the improvement for Hermes is more significant:

it increases the total utility by 49% and 85% from I2 and One

Shot on average. This demonstrates that our algorithms take

full advantage of different properties of objective function and

significantly increase utility by determining the reduced flow

rate with the least utility reduction.
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Fig. 10. Running time
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Fig. 11. Control overhead

We evaluate the running time of our algorithms which is

illustrated in Fig. 10. We can see that, most updates using

Hermes finish within 33 seconds while SWAN takes 54
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seconds. The essential reason is that congestion-free update

usually introduces more intermediate stages and thus involves

more variables in LP, which results in more running time. Even

worse, since SWAN has to solve a series of LP to obtain a

congestion-free update plan, the total running time is the sum

of the running time solving each LP. In contrast, Hermes and

I2 only require one stage during the update and thus save a lot

of running time. One Shot, as the lower bound of the running

time, is also evaluated in our experiments. It does not respect

the network utility and needs the least running time.

We define control overhead as the number of flow table

rules that needs to be added, removed or modified during the

update. Essentially this measures the number of operations, as

well as the number of flow table entries required to perform

the update. Fig. 11 shows the control overhead varies with

the number of flows. We observe that SWAN introduces more

control overhead than Hermes. When the number of flows is

5000, the control overhead of SWAN and Hermes is 72970 and

35207, respectively. SWAN is almost twice as that of Hermes.

The reason is that SWAN usually takes multiple stages to

avoid congestion when transitioning from initial stage to final

stage. Each stage involves a series of update operations. In

contrast, Hermes uses only one stage during the update, which

guarantees congestion-freedom by reducing the flow rate and

saves a lot of update operations.

VI. CONCLUSION

In this paper, we presented Hermes, a utility-aware net-

work update system, which produces a rate-limiting scheme

before update which maximizes the total utility, while ensuring

congestion-freedom during asynchronous update. We formu-

lated it as an optimization program, and a series of algorithms

are developed. Evaluation results show that Hermes can in-

crease the total utility and reduce the control overhead.
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